Роль клетки в эволюции живого
Появление первой примитивной клетки стало началом биологической эволюции жизни на планете. Что послужило причиной возникновения именно живой клетки из неживого, до сих пор неизвестно, существует несколько гипотез, однако большинство из них говорит о том, что имел место некий доклеточный предок - протобионт, из которого впоследствии сформировалась древнейшая клетка. Механизм перехода от сложных органических веществ к простым живым организмам наукой пока не установлен. Теория биохимической эволюции, предложенная ученым А.И. Опариным в 20-х гг., предлагает лишь общую схему. В соответствии с ней между первичными сгустками органических веществ (коацерватов) могли выстраиваться молекулы сложных углеводородов, что приводило к образованию примитивной клеточной мембраны, обеспечивающей данным сгусткам стабильность. Именно с появлением мембраны можно говорить о рождении клетки - основной структурной единицы жизни, способной к росту и размножению. Очевидно, археклетка была отграничена от внешней среды двухслойной оболочкой (мембраной), обладала способностью всасывать через нее протоны, ионы и маленькие молекулы, а ее метаболизм основывался на низкомолекулярных углеродных соединениях. Для строения археклетки характерно наличие клеточного скелета, отвечавшего за целостность клетки, а также обеспечивавшего возможность ее деления.
Первыми возникшими на Земле одноклеточными организмами были примитивные бактерии, не обладавшие ядром - прокариоты. Они жили в безкислородной среде и питались готовыми органическими соединениями - веществами, синтезированными в процессе химической эволюции. Однако по мере наполнения атмосферы земли кислородом, многим бактериям пришлось приспособиться к кислородному дыханию - фотосинтезу, что явилось поворотом в эволюции живого. Фотосинтез ускорял биологический круговорот веществ и эволюцию живого в целом. Долго длившийся процесс перехода к фотосинтезу привел примерно 2,6 млрд. лет назад к возникновению первых, имеющих ядро организмов - эукариотов. Это были более совершенные организмы, в ядре которых были сконцентрированы хромосомы с ДНК, сама клетка воспроизводилась уже без серьёзных изменений.
Последующая эволюция эукариотов связана с разделением этих организмов на животные и растительные (примерно 2,6 млрд. - 570 млн. лет назад). Растительные клетки эволюционировали в сторону развития жесткой целлюлозной оболочки клеток и активного использования фотосинтеза, животные же клетки «выбрали» увеличение способности к передвижению, а также усовершенствовали способы поглощать и выделять продукты переработки пищи.
Следующими важными этапами в эволюции живого мира стало половое размножение (около 900 млн. лет назад) и появление многоклеточных организмов с телом, тканями и органами, выполняющими определённые функции (700-800 млн. лет назад). Это были губки, черви, членистоногие и т.п. К тому времени мировой океан уже заселяли водоросли.
Подводя итог, можно сказать, что именно выделение живой самостоятельной клетки из окружающей среды и стало толчком к началу эволюции жизни на земле и роль клетки в развитии всего живого является главенствующей.
3. Организм как основа целостности живой системы
Организм - любое живое существо. Он отличается от неживой природы определенной совокупностью свойств, присущих только живой материи: клеточная организация; обмен веществ при ведущей роли белков и нуклеиновых кислот, обеспечивающий гомеостаз организма - самовозобновление и поддержание постоянства его внутренней среды. Живым организмам присущи движение, раздражимость, рост, развитие и наследственность, а также приспособляемость к условиям существования - адаптация.
Взаимодействуя с абиотической средой, организм выступает как целостная система, включающая в себя все более низкие уровни биологической организации. Все эти части организма (гены, клетки, клеточные ткани, целые органы и их системы) являются компонентами и системами доорганизменного уровня. Изменение одних частей и функций организма неизбежно влечет за собой изменение других. Так, в изменяющихся условиях существования, в результате естественного отбора те или иные органы получают приоритетное развитие. Например, мощная корневая система у растений засушливой зоны (ковыль) или «слепота» в результате редукции глаз у ночных животных, существующих в темноте (крот).
Живые организмы обладают обменом веществ, или метаболизмом, при этом происходит множество химических реакций. Примером таких реакций могут служить дыхание, которое еще Лавуазье и Лаплас считали разновидностью горения, или фотосинтез, посредством которого зелеными растениями связывается солнечная энергия, а результаты дальнейших процессов метаболизма используются всем растением.
Как известно, в процессе фотосинтеза кроме солнечной энергии используются двуокись углерода и вода. Суммарно химическое уравнение фотосинтеза выглядит так:
Солнечная энергия + 6СО2 +12Н2О >С6Н12О6 + 6О2,
где С6Н12О6 - богатая энергией молекула глюкозы.
Практически вся двуокись углерода (СО2) поступает из атмосферы, и днем ее движение направлено вниз к растениям, где осуществляется фотосинтез и выделяется кислород. Дыхание - процесс обратный, и движение СО2 ночью направлено вверх, и идет поглощение кислорода.
Некоторые микроорганизмы, бактерии способны создавать органические соединения и за счет других компонентов, например за счет соединений серы. Такие процессы называются хемосинтезом.
Обмен веществ в организме происходит только при участии особых макромолекулярных белковых веществ - ферментов, выполняющих роль катализаторов. Каждая биохимическая реакция в процессе жизни организма контролируется особым ферментом, который в свою очередь контролируется единичным геном. Изменение гена, называемое мутацией, приводит к изменению биохимической реакции вследствие изменения фермента, а в случае нехватки последнего - к выпадению соответствующей ступени метаболической реакции.
Однако не только ферменты регулируют процессы метаболизма. Им помогают коферменты - это крупные молекулы, частью которых являются витамины - вещества, необходимые для обмена веществ всех организмов - бактерий, зеленых растений, животных и человека. Отсутствие витаминов ведет к болезням - нарушается обмен веществ.
Наконец для ряда метаболических процессов необходимы особые химические вещества, называемые гормонами, которые вырабатываются в различных местах (органах) организма и доставляются в другие места кровью или посредством диффузии. Гормоны осуществляют в любом организме общую химическую координацию метаболизма и помогают, например, нервной системе животных и человека.
На молекулярно-генетическом уровне особенно чувствительно воздействие загрязняющих веществ, ионизирующей и ультрафиолетовой радиации. Оно вызывает нарушение генетических систем, структуры клеток и подавляет действие ферментных систем. Все это приводит к болезням человека, животных и растений, угнетению и даже уничтожению видов, живых организмов.
Метаболические процессы протекают с различной интенсивностью на протяжении всей жизни организма, всего пути его индивидуального развития. Этот его путь от зарождения и до конца жизни называется онтогенезом. Он представляет собой совокупность последовательных морфологических, физиологических и биохимических преобразований, претерпеваемых организмом за весь период жизни.
Онтогенез включает рост организма, т.е. увеличение массы и размеров тела, и дифференциацию, т.е. возникновение различий между однородными клетками и тканями, приводящее их к специализации по выполнению различных функций в организме. У организмов с половым размножением онтогенез начинается с оплодотворенной клетки (зиготы), при бесполом размножении - с образования нового организма путем деления материнского тела или специализированной клетки, путем почкования, а также от корневища, клубня, луковицы и т.п.
Каждый организм в онтогенезе проходит ряд стадий развития. Для организмов, размножающихся половым путем, различают зародышевую (эмбриональную), послезародышевую (постэмбриональную) и период развития взрослого организма. Зародышевый период заканчивается выходом зародыша из яйцевых оболочек, а у живородящих - рождением. Важное экологическое значение для животных имеет первоначальный этап послезародышевого развития, протекающий по типу прямого развития или по типу метаморфоза. В первом случае идет постепенное развитие во взрослую форму (цыпленок - курица и т.д.), во втором развитие происходит в виде личинки, которая существует и питается самостоятельно, прежде чем превратиться во взрослую особь (головастик - лягушка). У ряда насекомых личиночная стадия позволяет пережить неблагоприятное время года (низкие температуры, засуху и т.д.).
В онтогенезе растений различают рост, развитие (формируется взрослый организм) и старение (ослабление биосинтеза всех физиологических функций и смерть). Основной особенностью онтогенеза высших растений и большинства водорослей является чередование бесполого (спорафита) и полового (гематофита) поколений. Процессы и явления, проходящие на онтогенетическом уровне, т.е. на уровне индивида (особи), - это необходимое и весьма существенное звено функционирования всего живого. Процессы онтогенеза могут быть нарушены на любой стадии действием химического, светового и теплового загрязнения среды и привести к появлению уродов или даже к гибели индивидов на послеродовой стадии онтогенеза.
Современный онтогенез организмов сложился в течение длительной эволюции, в результате их исторического развития - филогенеза. Не случайно этот термин ввел Э.Геккель в 1866 г., так как для целей экологии необходима реконструкция эволюционных преобразований животных, растений и микроорганизмов. Этим занимается наука - филогенетика, базирующаяся на данных трех наук - морфологии, эмбриологии и палеонтологии.
Взаимосвязь между развитием живого в историко-эволюционном плане и индивидуальным развитием организма сформулирована Э.Геккелем в виде биогенетического закона: онтогенез всякого организма есть краткое и сжатое повторение филогенеза данного вида. Иными словами, в начале в утробе матери (у млекопитающих и др.), а затем, появившись на свет, индивид в своем развитии повторяет в сокращенном виде историческое развитие своего вида.
5. Заключение
В современной науке широко используется метод структурного анализа, при котором учитывается системность исследуемых объектов. Ведь структурность - это внутренняя расчлененность материального бытия, способ существования материи.
Структурные уровни организации материи строятся по принципу пирамиды: высшие уровни состоят из многочисленного числа низших уровней. Низшие уровни являются основой существования материи. Без этих уровней невозможно дальнейшее построение «пирамиды материи». Высшие уровни образуются путём эволюции - постепенно переходя от простого к сложному. Структурные уровни материи образованы из определенного множества объектов какого-либо вида и характеризуются особым способом взаимодействия между составляющими их элементами.
Все объекты живой и неживой природы можно представить в виде определенных систем, обладающих конкретными особенностями и свойствами, характеризующими их уровень организации. С учетом уровня организации можно рассматривать иерархию структур организации материальных объектов живой и неживой природы. Такая иерархия структур начинается с элементарных частиц, представляющих собой первоначальный уровень организации материи, и заканчивается живыми организациями и сообществами -- высшими уровнями организации.
Концепция структурных уровней живой материи включает представления системности и связанной с ней органической целостности живых организмов. Однако история теории систем начиналась с механистического понимания организации живой материи, в соответствии с которым все высшее сводилось к низшему: процессы жизнедеятельности -- к совокупности физико-химических реакций, а организация организма -- к взаимодействию молекул, клеток, тканей, органов и т.п.
Список литературы
1. Биологический энциклопедический словарь. М.: Большая российская энциклопедия, 1989.
2. Данилова В.С. Основные концепции современного естествознания: Учеб. пособие для вузов. М., 2000.
3. Медавар П., Медавар Дж. Наука о живом. Современные концепции в биологии. М.: Мир, 1983.
4. Реймерс Н.Ф. Популярный биологический словарь. М.: Наука, 1994.
5. Рузавин Г.И. Концепции современного естествознания: Учебник для вузов. М., 2003.
6. Слюсарев А.А., Жукова С.В. Биология. Киев: Вища школа, 1987.
https://revolution.allbest.ru/biology/00499815_0.html#text