Ионотропные и метаботропные рецепторы
Ионотропные рецепторы представляют собой мембранные каналы, открываемые или закрываемые при связывании с лигандом. Возникающие при этом ионные токи вызывают изменения трансмембранной разности потенциалов и, вследствие этого, возбудимости клетки, а также меняют внутриклеточные концентрации ионов, что может вторично приводить к активации систем внутриклеточных посредников. Одним из наиболее полно изученных ионотропных рецепторов является н-холинорецептор. Метаботропные рецепторы связаны с системами внутриклеточных посредников. Изменения их конформации при связывании с лигандом приводит к запуску каскада биохимических реакций, и, в конечном счете, изменению функционального состояния клетки
Никотиновый ацетилхолиновый рецептор: пример ионотропного рецептора
Данный рецептор найден в химических синапсах как в центральной, так и в периферической нервной системе, в нервно-мышечных синапсах, а также в эпителиальных клетках многих видов животных. Никотиновые рецепторы являются членами суперсемейства мембранных белков, включающих рецепторы серотонина (5-гидрокситриптамин, 5-НТ) , рецепторы для глицина и рецепторы ГАМК (гамма-аминомасляной кислоты). Было доказано, что данный рецептор в нервно-мышечных синапсах (где он расположен на мембранах клеток скелетных мышц) является гетероолигомерным комплексом, состоящим из четырех разных белковых субъединиц, которые были названы соответственно их молекулярной массе (в килодальтонах): α (40), β (50), γ (60), δ (65). При естественной экспрессии в клетке сначала возникают димерные комплексы α-γ и α-δ, потом формируется тример α-β-δ, и наконец, после объединения димера и тримера, в клеточную мембрану встраивается функциональный пентамер со стехиометрией α2βγδ. Итак, белок-рецептор ацетилхолина состоит из пяти субъединиц, которые вместе образуют канал, пронизывающий клеточную мембрану. Каждый из таких каналов может находиться в двух состояниях – открытом или закрытом. В открытом состоянии каналы проницаемы для строго определенных ионов (В основном ионов натрия и в меньшей степени - ионов калия). Большую часть времени этот канал закрыт. Но если две молекулы ацетилхолина связываются с белком, то заряд внутри макромолекулы сдвигается и, как следствие, происходит аллостерическое изменение его формы. Центральный канал расширяется, его внутренний диаметр становится приблизительно равным 0,65 нм. Благодаря этому он становится проходимым для катионов Na+ и K+. Для анионов канал остается непроходимым из-за имеющихся на внутренней стенке зарядов.
Другие ионотропные рецепторы
На многих клетках (в том числе нейронов) есть и множество других типов ионотропных рецепторов. Так, рецепторы некоторых тормозных нейромедиаторов - например, глицина - это хлорные каналы. Некоторые типы рецепторов глутамата (NMDA-рецепторы) проницаемы не только для ионов калия и натрия, но и для ионов кальция.
Основные системы внутриклеточной передачи сигнала от метаботропных рецепторов: вторичные посредники[править]
Аденилатциклазная система.
Центральной частью аденилатциклазной системы является фермент аденилатциклаза, который катализирует превращение АТФ в цАМФ(циклического аденозинмонофосфата). Этот фермент может либо стимулироваться Gs-белком (от английского stimulating), либо подавляться Gi-белком (от английского inhibiting). цАМФ после этого связывается с цФМФ-зависимой протеинкиназой, называемой также протеинкиназа А, PKA. Это приводит к ее активации и последующему фосфорилированию белков-эффекторов, выполняющих какую-то физиологическую роль в клетке.
Фосфолипазно-кальциевая система.
Gq-белки активируют фермент фосфолипазу С , которая расщепляет PIP2 (мембранный фосфоинозитол) на две молекулы: инозитол-3-фосфат (IP3) и диацилглицерол. Каждая из этих молекул является вторичным посредником. IP3 далее связывается со своими рецепторами (кальциевыми каналами) на мембране эндоплазматического ретикулума, что приводит к высвобождению ионов кальция в цитоплазму и запуску многих клеточных реакций.
Гуанилатциклазная система.
Центральной молекулой данной системы является гуанилатциклаза, которая катализирует превращение ГТФ в цГМФ. цГМФ модулирует активность ряда ферментов и ионных каналов. Существует несколько изоформ гуанилатциклазы. Одна из них активируется оксидом азота NO, другая непосредственно связана с рецептором предсердного натрийуретического фактора.