Опыты по удалению и пересадке ядер

Еще в конце XIX века были проведены первые опыты по удалению ядер и отдельных хромосом.

Хромосомы — структура и функции

Хромосо́мы — нуклеопротеидные структуры в ядре эукариотической клетки, в которых сосредоточена большая часть наследственной информации и которые предназначены для её хранения, реализации и передачи. У большинства эукариот хромосомы чётко различимы в световом микроскопе только в период митотического или мейотического деления клетки. В течение интерфазы они обычно деспирализуются; но у динофлагеллят и некоторых других протистов хромосомы остаются спирализованными и в период интерфазы, а, например, у малярийного плазмодия остаются деспирализованными и во время деления клетки. Набор всех хромосом клетки, называемый кариотипом, является видоспецифичным признаком, для которого характерен относительно низкий уровень индивидуальной изменчивости.

От чего зависит количество ядрышек в клетке?

Деление клетки

Механизмы деления клетки у прокариот

Митоз и мейоз — способы деления клеток эукариот. Роль митоза и мейоза в жизненном цикле

Митоз — способ деления клеток эукариот, при котором каждая дочерняя клетка получает то же число (и тот же набор) хромосом, что и материнская. Митозом могут делиться как гаплоидные, так и диплоидные клетки. При митозе клетки-потомки созраняют плоидность, которую имела материнская клетка: n → n, 2n → 2n.

Мейоз— способ деления клеток эукариот, при котором каждая дочерняя клетка получает в 2 раза меньшее число хромосом, чем материнская. При мейозе из диплоидных клеток получаются гаплоидные: 2n → n

Митоз, его роль в размножении и развитии эукариот. Фазы митоза[

Митоз — способ деления клеток эукариот, при котором каждая дочерняя клетка получает то же число (и тот же набор) хромосом, что и материнская. Митозом могут делиться как гаплоидные, так и диплоидные клетки.

Разнообразие типов митоза у эукариот

Мейоз. Фазы мейоза

Мейоз — это способ деления клеток эукариот, при котором из одной материнской клетки с двойным набором хромосом получается четыре с одинарным (если у материнской диплоидный набор, то у получившихся — гаплоидный). Мейоз включает в себя два деления:

Редукционное деление, в ходе которого к полюсам клетки расходятся гомологичные хромосомы, состоящие из пары хроматид. В результате образуется две новых клетки с гаплоидным набором.

Эквационное деление, в ходе которого обе образовавшиеся клетки делятся так же, как при митозе. Перед редукционным делением ДНК реплицируется (удваивается). Между редукционным и эквационным делениями удвоения ДНК не происходит.

Редукционное деление разбивают на четыре фазы:

Профаза I: образуется веретено деления, ядерная оболочка разрушается, а гомологичные хромосомы объединяются в биваленты (соединившиеся пары гомологичных хромосом). В это время пара хроматид из разных хромосом одного бивалента может обмениваться участками, которые содержат гомологичные последовательности ДНК (одинаковые или разные аллели одного гена). Такой процесс называется кроссинговером.

Метафаза I: во время этой фазы биваленты выстраиваются по экватору клетки, а нити веретена (микротрубочки) прикрепляются к центромерам разных гомологичных хромосом из пары. К каждой хромосоме присоединяются микротрубочки только от одного полюса веретена деления.

Анафаза I: гомологичные хромосомы каждой пары растягиваются к разным полюсам клетки. В результате образуются две клетки с гаплоидным набором хромосом.

Телофаза I: снова строится ядерная оболочка, и хромосомы раскручиваются (деспирализуются).

Эквационное деление тоже делится на четыре фазы.

Профаза II: в образовавшихся при редукционным делении клетках хромосомы конденсируются, образуется веретено деления, и нити от обоих полюсов веретена присоединяются к центромерам каждой хромосомы.

Метафаза II: хромосомы выстраиваются вдоль экватора клетки, образуя метафазную пластинку.

Анафаза II: центромера каждой хромосомы делится пополам, и нити веретена растягивают половинки хромосом (хроматиды) к разным полюсам каждой клетки.

Телофаза II почти ничем не отличается от телофазы I.

Передача сигнала в клетках

Передача сигналов от поверхности внутрь клетки необходима для функционирования любого организма. С помощью передачи сигналов клетки могут реагировать на изменения внеклеточный среды. У многоклеточных организмов с помощью передачи сигнала клетки реагируют на действие гормонов, нейромедиаторов и других сигнальных веществ, а также на другие стимулы (кроме химических). Например, многие клетки могут влиять друг на друга с помощью передачи механических или электрических стимулов, а клетки-рецепторы с помощью механизмов передачи сигналов воспринимают все раздражители (свет, запах, вкус. прикосновение и т.п.) и в конечном счете преобразуют их в нервные импульсы, передающиеся в мозг. Изучение механизмов передачи и усиления сигналов является одной из основных задач биологии клетки. Их знание необходимо для понимания механизмов формирования функционального ответа клеток в норме, его регуляции и коррекции при патологических состояниях.



Наши рекомендации