Интенсивность биологического поглощения
Биосфера
Состав живого вещества
Живые организмы в основном состоят из воды и органического вещества и, таким образом, состав живых организмов определяют химические элементы, которые образуют на поверхности Земли пары и газы: кислород, углерод, азот. При этом в любом организме обязательно присутствуют элементы, которые при полном разрушении организма (испарении воды и сгорании органического вещества до углекислого газа) образуют минеральный остаток в виде золы. Исходным источником минеральных веществ является земная кора. Сумма зольных элементов – это сложный итог взаимодействия живого вещества с земной корой. Поэтому изучение зольных элементов так же важно, как и определение главных элементов в организме.
Определение не только среднего состава всего живого вещества, но даже состава любого организма представляет собой весьма сложную задачу. Первая трудность возникает из-за того, что основным компонентом живых организмов является вода, содержание которой в организмах колеблется в широких пределах. Так, в планктоне содержится более 99% воды, в стволах деревьев – около 60%. С целью исключения влияния сильно варьирующих количеств воды и приведения данных о содержании химических элементов к выражению, удобному для сравнения, рассчитывают содержание элементов на абсолютно сухое органическое вещество (высушенное до постоянной массы при температуре 102 – 105 оС). В этом случае получают значения содержания элементов не в реальных живых организмах, а в их условной сухой биомассе.
Сухое органическое вещество содержит в качестве главных компонентов углерод (несколько менее половины по массе), кислород, водород и азот. Если сухое органическое вещество сжечь, то эти четыре главных элемента будут удалены, и в итоге останется зола – сумма так называемых минеральных веществ, которые входят в состав организма. Исследуя золу, можно более точно выяснить соотношение всех остальных химических элементов (их несколько десятков), которые входят в состав органов и тканей живого организма. Знание относительного содержания химических элементов в золе наземных растений позволяет сравнить его с концентрацией этих элементов в минеральном субстрате, на котором они произрастают и из которого получают зольные элементы.
Таким образом, существуют три варианта выражения химического состава любого биологического объекта и живого вещества в целом. Каждый из вариантов используется при решении определенных задач. Относительное содержание химических элементов можно рассчитать, во-первых, на живое («сырое») вещество организмов, во-вторых, на их сухую биомассу и, в-третьих, на золу (на сумму минеральных веществ).
В настоящее время установлено, что на долю высших растений приходится основная часть массы живого вещества суши и планеты в целом. Таким образом, состав растительности суши определяет состав всего живого вещества планеты. Подсчитано, что в живой (сырой) биомассе Мировой суши содержится 60 % воды, 38 % органического вещества, 2 % зольных элементов. При пересчете на абсолютно сухую биомассу это составляет 95 % органического вещества и 5 % зольных элементов. В случае сырого вещества 99,8% составляют 4 элемента: С, О, Н, N. В сухом веществе эти же элементы составляют 96,9%. Основные компоненты золы: Ca (35,1%), K (25,7%), S (11,2%), Mg (7,5%), Si (7,0), Cl (4,7),
Кларки главных химических элементов всего живого вещества суши приведены в табл. 4.1.
Таблица 4.1 – Относительное содержание химических элементов в живом веществе Мировой суши, % (цитировано по В.В. Добровольскому, 1998)
Химические элементы | Сырая масса (А.П. Виноградов, 1954) | Пересчет на сухое вещество | Пересчет на золу |
C | 18,0 | 45,0 | – |
O | 70,0 | 45,4 | – |
H | 10,5 | 5,75 | – |
N | 0,3 | 0,75 | – |
S | 0,05 | 0,13 | 11,2 |
P | 0,06 | 0,175 | 4,7 |
Ca | 0,50 | 1,25 | 35,1 |
K | 0,30 | 0,75 | 25,7 |
Mg | 0,04 | 0,10 | 7,5 |
Na | 0,02 | 0,05 | 2,8 |
Cl | 0,02 | 0,05 | 4,7 |
Si | 0,20 | 0,50 | 7,0 |
Al | 0,005 | 0,013 | 0,7 |
Fe | 0,1 | 0,025 | 0,5 |
Сумма | 99,70 | 99,84 | 99,9 |
Интенсивность биологического поглощения
Наиболее важной стороной геохимической деятельности растений является перераспределение газов на поверхности Земли, сопровождающее синтезирование органического вещества. Одновременно в миграцию вовлекаются химические элементы из почвы, которые остаются после сжигания в составе золы. Захватывая рассеянные элементы, растительность вовлекает их в особую форму движения – биологическую миграцию. Физиологическое значение разных элементов неодинаково, поэтому можно ожидать, что интенсивность их вовлечения в биологическую миграцию будет также различной.
Для оценки интенсивности биологического поглощения элемента надо сравнить величину его содержания в организме с содержанием в источнике, из которого данный элемент поступает. Следовательно, необходимо сравнить кларки титана и молибдена в фитомассе и земной коре, которая служит источником этих металлов в глобальном плане. Наиболее правильным будет сопоставление земных кларков рассеянных элементов с их концентрацией в минеральной части растений, т.е. в золе. Катионы, содержащиеся в золе, разделены на сильные, создающие хорошо растворимые щелочи и слабые.
Элементы, у которых Аx > 1, называются элементами «биологического накопления» и выделяются в 2 группы: 1 группа (10n – 100n) – энергично накапливаемые (P, S, Cl), 2 группа – сильно накапливаемые (Ca, K, Mg, Na, Sr, B, Zn) при Ax от n до 10n (табл. 4.3). Растения очень активно захватываются бор, бром, йод, цинк и серебро, у которых величина Ах выше 10
Для 3 группы элементов Ax < 1 (от n до 10n), хотя некоторые элементы – Cu, Ni, Co и др. могут тоже значительно поглощаться и накапливаться в живом веществе, но все же менее чем элементы 2 группы. Низкие значения Ах для таких элементов, как галлий, цирконий, титан, иттрий, лантан можно объяснить тем, что они присутствуют в земной коре в трудно доступных для растений формах, а другие, например уран, фтор, токсичны и поэтому поглощаются ограниченно, их повышенное поглощение убивает организм. Большинство элементов 3 группы только захватывается, а не накапливается. 4 и 5 группы – это группы слабого и очень слабого захвата.
Таблица 4.3
* по Перельману (1966)
Например, расчеты показали, что растительность аккумулирует молибден в несколько десятков раз интенсивнее, чем титан. Рассматривая ряды поглощения элементов, мы устанавливаем очень интенсивное поглощение сильных анионов (Cl, S, Р), для которых Ах составляет 10-n—100-n и значительно более слабое поглощение катионов (Са, Mg, Na, К), для которых Ах равен п.Al, U, Zr поглощаются живым веществом в 100 раз меньше, чем элементы 2 группы.
Выделяются следующиегеохимические особенности биологическогопоглощения:если сравнивать поглощение анионов и катионов, то оказывается, что интенсивность поглощения организмами сильных анионов (Cl, S, Р) в десятки раз больше, чем интенсивность поглощения сильных катионов (Са, Mg, Na, К).Отметим, что вещества, являющиеся слабыми катионами или анионами также слабо поглощаются живым веществом. Таким образом, значения Кларков рассеянных элементов в земной коре не предопределяют интенсивности их биологического поглощения.