Морфогенетические поля и моторные поля

Несмотря на то что поля, контролирующие измене­ния формы специализированных двигательных струк­тур животных,— это фактически морфогенетические поля, они вызывают, скорее, движения, нежели из­менения формы. По этой причине кажется более уместным называть их двигательными, или мотор­ными, полями. (Слово «motor» употребляется здесь как прилагательное от существительного «motion» — движение.) Моторные поля, подобно морфогенетическим полям, зависят от морфического резонанса со стороны прошлых подобных систем, и их действие состоит в актуализации виртуальных форм. Канали­зованные пути к конечной форме или состоянию для моторных полей можно назвать хреодами, так же как и для морфогенетических полей.

Моторные поля, как и морфогенетические поля, имеют иерархическую организацию и, вообще говоря, связаны с развитием, выживанием и воспроизведени­ем. В то время как у растений эти процессы почти пол­ностью морфогенетичны, у животных они зависят также и от движения. Действительно, у большинства животных даже поддержание нормальных функций те­ла требует постоянного движения внутренних органов, таких как кишечник, сердце и дыхательная система.

В отличие от растений животные должны питаться другими живыми организмами, чтобы поддерживать свои формы. Поэтому важным общим для всех живот­ных моторным полем является поле питания. Оно уп­равляет вспомогательными полями, ответственными за нахождение, добычу и съедание растения или животно­го, которые служат пищей. Некоторые животные ведут сидячий образ жизни и заставляют еду двигаться к ним, например, с течениями воды; другие просто переходят с места на место, пока не находят растения, которые могут есть; третьи охотятся за другими животными; есть такие, которые делают ловушки, чтобы поймать жертву; некоторые являются паразитами; иные питаются пада­лью и так далее. Все эти способы питания зависят от иерархий специфических хреод.

Другой основной тип моторных полей связан с избе­ганием неблагоприятных условий. Amoeba и Рататесшт проявляют реакции наиболее простого типа: уход назад или в сторону от неблагоприятного стимула и движение в каком-либо ином направлении. Животные, ведущие сидячий образ жизни, такие как Stentor или Hydra, реаги­руют на слабый неблагоприятный стимул сокращением своего тела, но при более сильном стимуле они устрем­ляются прочь и устраиваются где-нибудь в другом месте. В дополнение к общим реакциям избегания многие жи­вотные проявляют также особые виды поведения, кото­рые позволяют им спасаться от хищников: например, они могут быстро убегать, или отстаивать свою позицию и как-либо пугать хищника, или застыть таким образом, что становятся менее заметными.

Конечной формой полных полей развития и выжи­вания является взрослое животное, выросшее в опти­мальных условиях. Когда бы ни достигалось это состо­яние, животному не нужно делать для этого что-либо особенное, но отклонения от такого состояния подвер­гают животное влиянию различных моторных полей, направленных к его восстановлению. В действительно­сти такие отклонения происходят часто: непрерывный метаболизм у животного истощает его запасы пищи; изменения в окружающей среде ставят его в неблаго­приятные условия; к нему неожиданно приближаются хищники. Эти и другие изменения обнаруживаются чувствительными структурами и вызывают характер­ные изменения нервной системы, которые затем ста­новятся структурой зародыша для особого моторного поля.

Конечная форма полного поля воспроизведения есть создание жизнеспособного потомства. У одно­клеточных организмов и у простых многоклеточных животных, таких как гидра, эта цель достигается с помощью морфогенетического процесса: организмы делятся надвое или выталкивают новые особи. Подоб­но этому, примитивные способы полового воспроизве­дения по существу морфогенетичны: многие низшие животные (например, морские ежи), а также низшие растения (например, морской сорняк Fucus) просто выбрасывают миллионы яйцеклеток и сперму в воду вокруг себя.

У более продвинутых животных сперма выделяется не наугад, но поблизости от яйцеклетки в результате спе­циального брачного поведения. Таким образом полное поле воспроизведения начинает охватывать моторные поля поиска партнера, ухаживания, и спаривания. Орга­низмы могут подпадать под влияние первого моторного поля в этом ряду вследствие внутренних физиологичес­ких изменений, сопровождающихся выделением гормо­нов, а также под действием обонятельных, визуальных или иных стимулов от потенциальных партнеров. Конеч­ная точка первого поля создает зародыш для второго и так далее: за поиском партнера следует ухаживание, которое в случае успеха приводит к начальной точке хреоды спаривания. В простейших случаях конечная форма всей цепочки для мужского партнера есть извер­жение (семени), для женского — откладывание яиц. У многих водных организмов яйца просто откладывают­ся в воду, но у земных животных откладывание яиц ча­сто включает сложные и высокоспецифичные модели поведения: например, наездники (вид насекомого) откла­дывают свои яйца в гусеницы определенных видов, в ко­торых развиваются личинки-паразиты, а осы-горшеч­ники делают маленькие горшочки, куда они кладут парализованную жертву, затем откладывают на нее яйца и запечатывают «горшочки».

У некоторых живородящих видов потомство про­сто выталкивается наружу и оказывается покинутым сразу после рождения. Но когда о детенышах заботят­ся сразу после рождения или высиживания, начинает работать новая серия моторных полей, все еще находя­щихся под контролем полного поля воспроизведения родителей, но в то же время обслуживающих и поле развития и выживания детенышей. Следовательно, поведение животных приобретает социальное измере­ние. В простейших случаях такие сообщества носят временный характер и распадаются, когда потомство становится независимым; в других случаях сообщест­ва сохраняются с соответствующим увеличением сложности поведения. Специальные моторные поля управляют различными видами общения между особя­ми и разными задачами, которые выполняют отдель­ные индивидуумы.

В чрезвычайно сложных сообществах термитов, муравьев и общественных пчел и ос особи с подобным или идентичным генетическим строением выполняют совершенно различные задачи, а одно и то же насекомое даже может в разное время играть разные роли: напри­мер, молодая рабочая пчела может сначала чистить улей, затем, через несколько дней, «нянчить» выводящихся пчел, затем строить соты для меда, затем получать и ук­ладывать пыльцу, затем охранять улей и, наконец, выле­тать на поиски пищи[200]. Каждая из этих ролей должна на­правляться моторным полем высшего уровня, которое контролирует по очереди хреоды низших уровней, опре­деляющие выполнение отдельных специальных задач. Изменения нервной системы насекомых должны ста­вить их под контроль одного или другого из этих полей высших уровней, способствуя их попаданию в морфический резонанс с предшествовавшими работниками, выполнявшими данную отдельную роль. Такие измене­ния до некоторой степени зависят от изменений в физи­ологии насекомого по мере его взросления, но на них сильно влияют также внешние стимулы: роли индивидов изменяются в ответ на повреждения улья или наруше­ния в пчелином сообществе; вся система регулируется.

Моторные поля высших уровней — питания, избе­гания, воспроизведения и т. д.— обычно управляют серией полей низших уровней, которые действуют последовательно, так что конечная форма одного обеспечивает зародышевую структуру для следующе­го. Моторные поля еще более низких уровней в этой иерархии часто действуют циклично, порождая по­вторяющиеся движения, такие как движения ног при ходьбе, крыльев в полете, челюстей при жевании. Самый низкий уровень занимают поля, во всех дета­лях контролирующие сокращение клеток в мускулах.

Моторные поля высших уровней охватывают не только органы чувств, нервную систему и мускулы, но также объекты вне животного. Рассмотрим, напри­мер, моторные поля питания. Полный процесс — поимка и заглатывание пищи — фактически представ­ляет собой особый тип агрегативного морфогенеза (ср. раздел 4.1). Голодное животное является зародышевой структурой и вступает в морфический резонанс с пре­дыдущими конечными формами этого моторного поля, а именно с полями подобных животных, существовав­ших в прошлом (включая его самого), в сытом состоя­нии. Если речь идет о хищнике, достижение этой ко­нечной формы зависит от поимки и заглатывания добычи. Моторное поле поимки распространяется в пространстве вокруг животного и включает в него вир­туальную форму добычи (рис. 11). Эта виртуальная форма актуализируется, когда сущность, достаточно близко ей соответствующая, приближается к хищни­ку: добыча узнается, и активизируется хреода поимки. Теоретически моторное поле может влиять на вероят­ностные события в любой или во всех системах, кото­рые оно охватывает, включая органы чувств, мускулы и саму жертву. Но в большинстве случаев его влияние, вероятно, ограничено модификацией вероятностных событий в центральной нервной системе, что направляет движения животного к достижению конечной формы, в данном случае к поимке добычи.

Моторные поля и чувства

Посредством морфического резонанса животное попадает под влияние специфических моторных полей вследствие своей характерной структуры и внутренней организации колебательных процессов. Эти процессы изменяются в результате изменений, происходящих в теле животного, и влияний извне.

Если различные стимулы вызывали одинаковые из­менения внутри животного, тогда начинают работать одни и те же моторные поля. По-видимому, это именно то, что происходит в одноклеточных организмах, кото­рые проявляют одну и ту же реакцию избегания в ответ на разнообразные физические и химические стимулы: возможно, все они оказывают одинаковое воздействие на физико-химическое состояние клетки, например изменяя проницаемость клеточной мембраны для каль­ция или других ионов.

У простых многоклеточных животных с относитель­но слабой сенсорной специализацией диапазон реакций на стимулы ненамного больше, чем у одноклеточных. Например, гидра демонстрирует одинаковые реакции избегания на множество различных физических и хими­ческих стимулов и отвечает на объекты, такие как части­цы пищи, только при механическом контакте. Однако, как и у некоторых одноклеточных организмов, ее реак­ция на твердые объекты изменяется под влиянием хими­ческих стимулов. Это можно показать на простом экспе­рименте: если к щупальцам голодной гидры подаются маленькие кусочки фильтровальной бумаги, реакции не наблюдается; но если они предварительно смочены в мясном соусе, щупальца несут их в рот, и затем они проглатываются[201].

Напротив, животные, имеющие глаза, которые формируют образы, могут чувствовать объекты, еще находящиеся на некотором расстоянии от них; следо­вательно, моторные поля здесь распространяются дальше в окружающую среду; диапазон и разнообра­зие поведения животных значительно возрастают. Подобным же образом чувство слуха позволяет обна­руживать удаленные объекты и поэтому позволяет расширить пространственную протяженность мотор­ных полей даже до тех областей, где объект не может быть виден. У некоторых животных, особенно у лету­чих мышей, это чувство заменило зрение как основу протяженных моторных полей. А у некоторых видов, живущих в воде, таких как электрические рыбы (виды Mormyrid и Gimnotid), специализированные рецеп­торы обнаруживают изменения электрического поля вокруг них с помощью импульсов, испускаемых их электрическими органами; это позволяет им опреде­лять местонахождение добычи и других объектов в загрязненных тропических реках, где они обитают.

Когда животные движутся, чувственные стимулы, возникающие как внутри их тел, так и под влиянием среды, изменяются в результате их собственных движе­ний. Эта непрерывная обратная связь играет сущест­венную роль в координации движений их моторными полями.

Подобно морфогенетическим полям, моторные по­ля являются вероятностными структурами, которые с помощью морфического резонанса связываются с фи­зическими системами через их трехмерные колеба­тельные структуры. Поэтому фундаментальное значе­ние имеет тот факт, что все колебательные вводы переводятся в пространственно-временные структу­ры, в которых осуществляется деятельность нервной системы. В чувстве осязания стимулы действуют на оп­ределенные участки тела, которые отмечены («картарованы») в мозгу в результате действия особых нерв­ных путей; в зрении образы, попадающие на сетчатку, вызывают распределенные в пространстве изменения в оптических нервах и зрительной коре; и хотя обоня­тельные, вкусовые и слуховые стимулы не носят непо­средственно пространственный характер, нервы, кото­рые они возбуждают через соответствующие органы чувств, находятся в определенных местах и импульсы, проходящие по этим нервам в центральную нервную систему, создают характерные объемные распределе­ния возбуждения.

Таким образом, отдельные стимулы и их комбина­ции производят характерные пространственно-времен­ные эффекты. Эти динамические картины активности приводят нервную систему в морфический резонанс с подобными прошлыми нервными системами в анало­гичных состояниях, и, следовательно, она попадает под влияние особых моторных полей.

Регуляция и регенерация

Подобно морфогенетическим полям, моторные поля направляют системы, находящиеся под их влия­нием, к характерным конечным формам. Обычно они достигают этого, стимулируя серию движений в опре­деленной последовательности. Промежуточные стадии стабилизируются с помощью морфического резонанса, другими словами, они являются хреодами. Но хреоды представляют собой просто наиболее вероятные пути к конечным формам. Если нормальный путь заблокиро­ван или если система отклонилась от него по какой-либо причине, та же самая конечная форма может быть достигнута другим путем: система регулируется (раз­дел 4.1). Многие, но не все морфогенетические сис­темы способны к регуляции; таковы и двигательные системы.

Регуляция происходит под действием моторных полей на всех иерархических уровнях: например, если несколько мускулов или нервов в ноге у собаки по­вреждены, организация сокращений в других мускулах регулируется таким образом, что конечность функцио­нирует нормально. Если нога ампутирована, движения оставшихся ног изменяются так, что собака все же может ходить, хотя и хромает. Если повреждены части коры ее головного мозга, через некоторое время он вос­станавливается более или менее полно. Если ее осле­пить, ее способность двигаться постепенно улучшается, по мере того как она начинает более полагаться на ос­тавшиеся чувства. А если прегражден обычный путь к дому, ее еде или щенкам, она изменяет привычную по­следовательность движений, пока не находит новый путь для достижения цели.

Поведенческий эквивалент регенерации встречает­ся тогда, когда конечная форма хреоды была актуализи­рована, но затем разрушена: представьте, например, кота, который поймал мышь, что является конечной точкой хреоды поимки добычи. Если мышь ускользает из его когтей, то движения кота направлены на то, что­бы снова ее поймать.

Из всех примеров поведенческой регенерации ее соответствие регенерации морфогенетической лучше всего обнаруживается в морфогенетическом поведе­нии, связанном с созданием характерных структур. В некоторых случаях животные улучшают эти структу­ры после их повреждения. Например, было сделано наблюдение, что осы-горшечники иногда заполняют отверстия, сделанные экспериментатором в стенках их горшочков, с помощью действий, которые они никогда не совершают при нормальном построении горшоч­ков[202]. А термиты чинят повреждения в своих галереях и гнездах кооперативными и координированными уси­лиями множества отдельных насекомых[203].

Эти и подобные действия иногда интерпретирова­лись как свидетельства существования разума на том основании, что животные, действующие строго фикси­рованным образом, задаваемым инстинктом, не были бы способны столь гибко реагировать на необычные ситуации[204]. Но, следуя этой логике, можно было бы ска­зать, что регулирующиеся эмбрионы морских ежей и регенерирующие плоские черви также проявляют при­знаки разума. Однако такое расширение физиологиче­ской терминологии, скорее, внесло бы путаницу, неже­ли оказалось полезным. С точки зрения гипотезы формативной причинности такие подобия признаются, но интерпретируются иначе. Способность животных достигать поведенческих целей необычными путями, рассматриваемая с позиций морфогенетической регу­ляции и регенерации, не дает оснований вводить новые фундаментальные принципы. А когда у высших живот­ных некоторые типы поведения более не следуют стан­дартным хреодам — когда поведенческая регуляция становится, так сказать, скорее, правилом, чем исклю­чением,— эту подвижность можно рассматривать как расширение возможностей, заложенных в самой при­роде морфогенетических и моторных полей.

Глава 10
Инстинкт и обучение

Влияние прошлых действий

Подобно морфогенетическим полям, моторные поля задаются морфическим резонансом от прошлых подобных систем. Детали строения животного и орга­низация колебательной активности его нервной систе­мы обычно подобны таковым у него самого более, нежели у какого-либо другого животного. Таким обра­зом, наиболее специфическим морфическим резонан­сом, действующим на данное животное, будет резонанс от его собственной формы в прошлом (ср. раздел 6.5). Следующий наиболее специфический резонанс будет от генетически подобных животных, которые жили в тех же условиях, и наименее специфический — от живот­ных других пород, живущих в других условиях. В «до­линной» модели хреоды {рис. 5] последний стабили­зирует общую форму, тогда как более специфический резонанс определяет детали топологии дна этой долины.

Морфогенетические поля и моторные поля - student2.ru

Рис. 27. Схематическое изображение глубоко канализиро­ванной хреоды (А) и хреоды, слабо канализированной на на­чальных стадиях (В)

«Контуры» долины хреод зависят от степени подо­бия между поведением родственных животных той же породы или вида. Если их модели движения варьиру­ются слабо, морфический резонанс порождает глубо­кие и узкие хреоды, представленные долинами с кру­тыми краями {рис. 27 А). Такие хреоды оказывают сильное канализирующее действие на поведение по­следующих индивидуумов, которые по этой причине будут стремиться вести себя весьма сходным образом. Стереотипные модели поведения, обусловленные та­кими хреодами, на низших уровнях проявляются как рефлексы, а на высших уровнях — как инстинкты.

С другой стороны, если подобные друг другу живот­ные достигают конечных форм своих моторных полей различными способами движения, хреоды не будут столь четко определены {рис. 27 В); поэтому здесь диа­пазон индивидуальных различий в поведении больше. Но после того как отдельное животное достигло цели своего поведения собственным путем, его последую­щее поведение будет канализироваться по тому же пу­ти вследствие морфического резонанса с его же собст­венными прошлыми состояниями; и чем чаще такие действия повторяются, тем сильнее становится эта ка­нализация. Такие характерные индивидуальные хрео­ды проявляют себя как привычки.

Таким образом, с точки зрения гипотезы форма­тивной причинности между инстинктами и привычка­ми разница лишь в степени: и те и другие зависят от морфического резонанса, первые — с бесчисленными предшествовавшими индивидуумами того же вида, а вторые — преимущественно с прошлыми состояния­ми того же индивидуума.

Этим мы не хотим сказать, что рефлексы и инстинк­ты не зависят от весьма специфически организованно­го морфогенеза нервной системы. Очевидно, что такая зависимость существует. Мы не хотим также сказать, что в процессах обучения не происходят физические или химические изменения в нервной системе, кото­рые облегчают повторение данного вида движения. Возможно, в простой нервной системе, осуществляю­щей стереотипные функции, потенциал для таких изменений может быть уже «встроен» в систему «про­водов» таким образом, что обучение происходит квазимеханически. Например, было обнаружено, что у улитки Aplysia строение нервной системы почти оди­наково у разных особей, вплоть до мельчайших дета­лей расположения возбуждающих и ингибирующих синапсов на отдельных клетках. Очень простые виды обучения встречаются в связи с рефлекторным втяги­ванием жабер во впадину под покровной пластинкой, а именно привыкание к безвредным и приобретение чувствительности к опасным стимулам; при этих про­цессах функционирование отдельных возбуждающих и ингибирующих синапсов, действующих на индиви­дуальные клетки, определенным образом изменяется[205]. Конечно, простое описание этих процессов само по се­бе не выявляет причин таких изменений; в настоящее время можно лишь строить предположения на этот счет. Одно из них состоит в том, что эти модификации химического происхождения и связаны, вероятно, с изменениями в фосфорилировании белков[206]. Но как возникла эта тонкая специализация структуры и функ­ций нервов и синапсов? Проблема переносится в об­ласть морфогенеза.

Нервные системы высших животных значительно больше варьируются от индивидуума к индивидууму, чем у беспозвоночных типа Aplysia, и они гораздо слож­нее. Очень мало известно о том, каким образом сохра­няются заученные способы поведения[207], но накоплено уже достаточно сведений, чтобы утверждать, что здесь не может быть простого объяснения на уровне специ­фически локализованных физических и химических «следов» в нервной ткани.

Многочисленные исследования показали, что у мле­копитающих привычки, образовавшиеся при обучении, часто сохраняются после значительного повреждения коры и участков подкорки головного мозга. Более того, когда происходит потеря памяти, она не является тесно связанной с местонахождением таких повреждений, но зависит, скорее, от общего количества поврежден­ной ткани. К. С. Лэшли суммировал результаты сотен экспериментов следующим образом:

«Невозможно продемонстрировать изолированный участок как след памяти где-либо в нервной системе. Ограниченные области могут быть существенными для обучения или сохранения определенной активнос­ти, но в таких областях их части в функциональном отношении эквивалентны»[208].

Подобный же феномен был продемонстрирован на беспозвоночном — осьминоге: наблюдения сохранения приобретенных привычек после разрушения различ­ных частей вертикальной доли мозга привели к кажу­щемуся парадоксальным выводу, что «память находится везде одновременно и нигде в частности»[209].

С механистической точки зрения эти результаты сильно озадачивают. В попытках найти им объяснение было высказано предположение, что «следы» памяти каким-то образом распределены в мозгу способом, аналогичным тому, который используется при сохранении информации в виде интерференционных картин в голограмме[210]. Но это пока не более чем неопределенное соображение.

Гипотеза формативной причинности дает альтер­нативное объяснение, в котором сохранение приобре­тенных привычек, несмотря на повреждение мозга, выглядит гораздо менее загадочно: привычки зависят от моторных полей, которые вообще не сохраняются в мозгу, но приходят непосредственно от его прошлого состояния путем морфического резонанса.

Некоторые приложения гипотезы формативной причинности применительно к проблемам инстинкта и обучения рассматриваются в следующих разделах, а в главе 11 предлагаются способы, с помощью кото­рых можно экспериментально отличить предсказания, вытекающие из этой гипотезы, от предсказаний меха­нистической теории.

Инстинкт

У всех животных некие модели двигательной ак­тивности являются, скорее, врожденными, нежели приобретенными в результате обучения. Наиболее фундаментальный характер имеют движения внутрен­них органов, таких как сердце и кишечник, но многие из способов движения конечностей, крыльев и других двигательных структур также являются врожденными. Это наиболее очевидно, когда животные оказываются способными совершать правильные, полезные для них движения почти сразу же после того, как они родились или вылупились из яйца.

Не всегда легко провести различие между врож­денным и «обученным» поведением. Вообще говоря, характерное поведение, которое вырабатывается у молодых животных, воспитанных в изоляции, обычно может рассматриваться как врожденное; с другой стороны, поведение, которое появляется только при контакте с другими особями того же вида, также может быть врожденным, но требуются стимулы от других животных, чтобы оно проявилось.

Исследования инстинктивного поведения многих видов животных привели к нескольким общим выво­дам, которые составляют классические принципы это­логии[211]. Их можно суммировать следующим образом:

(1) Инстинкты организованы в виде иерархии сис­тем или центров, наложенных друг на друга. Каждый уровень активируется главным образом системой вышележащего уровня. Самый высокий центр каждого из основных инстинктов может испытывать влияние многих факторов, таких как гормоны, чувственные стимулы изнутри животного и стимулы из окружаю­ щей среды.

(2) Поведение, которое происходит под влиянием основных инстинктов, часто состоит из цепей более или менее стереотипных моделей поведения, называемых фиксированными моделями действия. Когда такая фиксированная модель создает конечную точку главной или малой цепи инстинктивного поведения, ее называют завершающим актом (consummately act). Поведение в ранней части инстинктивной цепи поведения, напри­ мер поиски пищи, может быть более гибким и называется обычно поведением инстинктивной потребности (appetitive behavior).

(3) Для активации, или «освобождения» (release), каждой системе требуется специфический стимул. Этот стимул, или «освободитель» (релизер), может при­ ходить изнутри тела животного или из окружающей среды. В последнем случае его часто называют знаковым стимулом. Предполагается, что данный релизер, или знаковый стимул, воздействует на специфический нейросенсорный механизм, называемый врожденным релизорным механизмом, который дает выход реакции.

Эти положения очень хорошо согласуются с идеей моторных полей, развивавшейся в предыдущей главе. Фиксированные модели действий находят объяснение на языке хреод, а врожденные освобождающие меха­низмы можно представить как структуры зародышей соответствующих моторных полей.

Знаковые стимулы

Инстинктивные отклики животных на знаковые стимулы показывают, что они как-то выделяют спе­цифические и повторяющиеся особенности в своем окружении.

«Животное "слепо" отвечает только на одну часть окружающей его ситуации и пренебрегает другими ее частями, хотя его органы чувств прекрасно могут их воспринимать. ...Эти эффективные стимулы можно легко обнаружить, проверяя реакцию на разные ситуа­ции, отличающиеся одним или другим из возможных стимулов. Более того, когда орган чувств участвует в "освобождении" реакции, лишь часть стимулов, кото­рые он может получить, действительно являются эффективными. Как правило, инстинктивная реакция отвечает лишь на очень немногие стимулы, а большая часть окружения оказывает незначительное или не оказывает никакого влияния, даже если животное име­ет чувствительные структуры для получения много­численных деталей» (Н. Тимберген)[212].

Эти принципы иллюстрируются следующими при­мерами[213]. Агрессивная реакция самца рыбы колюшки в отношении других самцов в сезон размножения высвобождается главным образом знаковым стимулом красного брюшка: модели очень грубой формы, но с красными брюшками атакуются гораздо чаще, чем модели правильной формы, но без красной окраски.

Подобные же результаты были получены в экспери­ментах на красногрудой малиновке: охраняющий территорию самец ведет себя угрожающе по отноше­нию к весьма приблизительным моделям с красными грудками или даже просто к пучку красных перьев, но гораздо слабее реагирует на точные модели птиц без красных грудок.

Молодые утки и гуси инстинктивно реагируют на приближение хищных птиц, причем эта реакция зави­сит от формы птицы в полете. Опыты с моделями из картона показали, что наиболее важным признаком является короткая шея, характерная для ястребов и других хищных птиц, тогда как размер и форма крыль­ев и хвоста имеют сравнительно мало значения.

У некоторых мотыльков сексуальный запах, или феромон, который обычно производят самки, застав­ляет самцов делать попытки к спариванию с любым объектом, обладающим таким запахом.

У саранчи вида Ephippiger ephippiger самцы привле­кают самок, желающих спариваться, своей песней. Самки привлекаются к поющим самцам со значитель­ного расстояния, но молчащих самцов они игнорируют, даже если те находятся поблизости. Самцы, которых заставляют молчать, склеивая их крылышки, неспособ­ны привлекать самок.

Курицы приходят на помощь цыплятам в ответ на их крик о бедствии, но не тогда, когда они просто видят цыплят в беде, например за звуконепроницаемым стеклянным барьером.

Согласно гипотезе формативной причинности, рас­познавание этих знаковых стимулов должно зависеть от морфического резонанса от прошлых подобных жи­вотных, подвергнутых тем же стимулам. Благодаря процессу автоматического усреднения этот резонанс будет усиливать только общие черты пространствен­но-временных моделей активности, вызываемых этими стимулами в нервной системе. Результат состоит в том, что из окружения выделяются лишь некоторые специфические стимулы, тогда как другие игнориру­ются. Рассмотрим, например, стимулы, действующие на кур, чьи цыплята попали в беду. Вообразим набор фотографий цыплят в беде во многих различных случа­ях. Фотографии, сделанные ночью, не отобразят ниче­го; снятые в дневное время покажут цыплят разных размеров и форм, видимых спереди, сзади, сбоку или сверху; более того, они могут быть вблизи других объ­ектов всех форм и размеров или даже спрятаны за ни­ми. Далее, если негативы всех этих фотографий нало­жить друг на друга, чтобы получить составное изображение, в нем не будут усилены какие-либо чер­ты, результатом будет просто расплывшееся пятно. Теперь вообразите, наоборот, магнитофонные записи, сделанные одновременно с фотографиями. На всех бу­дут крики о бедствии, и если эти звуки накладываются друг на друга, они усиливают друг друга, давая в ре­зультате автоматически усредненный крик о бедствии. Это наложение фотографий и магнитофонных запи­сей аналогично эффектам морфического резонанса от нервных систем предыдущих кур с последующей ку­рицей, испытывающей стимул в виде крика цыпленка в беде: зрительные стимулы не возбуждают специфи­ческого резонанса и не вызывают инстинктивной ре­акции, каким бы несчастным ни выглядел цыпленок для наблюдающего человека, в то время как на слухо­вые стимулы реакция есть.

Этот пример иллюстрирует то, что является, по-ви­димому, общим принципом: формы очень часто неэф­фективны в качестве знакового стимула. Возможная причина в том, что они сильно варьируются, поскольку зависят от угла, под которым рассматривается объект. Напротив, цвета гораздо менее зависимы от точки зре­ния, а звуки и запахи вряд ли вообще зависят от нее.

Существенно, что цвета, звуки и запахи играют важ­ную роль как «освободители» инстинктивных реак­ций; а в тех случаях, когда оказывается эффективной форма, имеется некоторое постоянство точки наблю­дения. Например, птенцы на земле видят хищников, летающих над ними, как силуэты и действительно реа­гируют на такие формы. А когда формы, или модели, поведения служат сексуальными знаковыми стимулами, они делают это в сценах ухаживания, или в «представле­ниях», в которых животные принимают различные позы относительно своих потенциальных партнеров. То же справедливо для демонстрации покорности или агрес­сивных намерений.

Обучение

Можно сказать, что происходит обучение, когда имеется какое-либо относительно постоянное адап­тивное изменение в поведении в результате прошлого опыта. Здесь можно выделить четыре общие кате­гории[214]:

(1) Наиболее универсальным типом, который обна­руживается даже у одноклеточных организмов[215], явля­ется привыкание, которое можно определить как ос­лабление реакции в результате повторения стимула, не сопровождающегося каким-либо подкреплением его значимости. Известный пример такого рода — исчезновение реакций тревоги или избегания на новые стимулы, которые оказываются безвредными: живот­ные к ним привыкают.

Этот феномен предполагает существование своего рода памяти, позволяющей узнавать стимулы, когда они повторяются. По гипотезе формативной причин­ности это узнавание обусловлено главным образом морфическим резонансом организма с его собствен­ными прошлыми состояниями, включая те, которые были вызваны новыми сенсорными стимулами. Этот резонанс служит для поддержания и фактически для определения идентичности организма с самим собой в прошлом (раздел 6.5). Повторяющиеся стимулы от окру­жения, отклики на которые не подкрепляются, станут действующей частью собственного «фона» организма. Наоборот, любые новые особенности окружения будут выделяться, поскольку они не распознаются как «свои»: обычно реакцией животного будет тревога или избега­ние именно потому, что стимулы ему незнакомы.

В случае некоторых стереотипных ответов, — таких как рефлекс отдергивания рожек у улитки Aplysia, при­выкание может происходить квазимеханистическим образом на основе предсуществующих структурной и биохимической специализаций в нервной системе (раздел 10.1). Но если так, эта специализация является вторичной и возникает, вероятно, в результате ситуа­ции, в которой привыкание более непосредственно зависит от морфического резонанса.

(2) У всех животных врожденные модели двигатель­ной активности выявляются по мере того, как индивид взрослеет. В то время как одни прекрасно действуют в первый же раз, когда они выполняются, другие совер­шенствуются со временем. Например, первые попытки птенца взлететь или детеныша млекопитающего — ходить могут быть успешными лишь отчасти, но они улучшаются после повторных усилий. Не все такие улучшения обусловлены практикой: в некоторых слу­чаях это просто результат созревания и происходит в такой же степени с течением времени у животных, которые были иммобилизованы[216]. Тем не менее многие виды двигательных приемов улучшаются таким спосо­бом, который нельзя приписать созреванию.

С точки зрения гипотезы формативной причин­ности этот тип обучения можно интерпретировать как регуляцию поведения. Морфический резонанс от бесчисленных прошлых особей данного вида автома­тически дает усредненную хреоду, которая руководит первыми попытками животного осуществить опреде­ленную врожденную модель движения. Эта стандарт­ная хреода может дать лишь приблизительно удовле­творительные результаты, например из-за отклонений от нормы органов чувств у животного, или его нервной системы, или двигательных структур. По мере того как движения совершаются, регуляция самопроизвольно вызывает к жизни «тонкие подстройки» к общей хреоде, а также к хреодам низшего уровня, которые она контролирует. Эти «подстроенные» хреоды будут ста­билизироваться путем морфического резонанса с про­шлыми состояниями самого животного, по мере того как будет повторяться эта модель поведения.

(3) Животные могут начать отвечать на какой-либо стимул реакцией, которая в норме вызывается другим стимулом. Такой тип обучения имеет место тогда, ког­да новый стимул действует одновременно или сразу же после начального стимула. Классическими приме­рами

Наши рекомендации