В происхождении шизофрении могут участвовать генетические и дофаминергические факторы, а также факторы, определяющие рост и развитие нервов
Шизофренические расстройства относятся к умственным расстройствам. Для них характерна психотическая симптоматика, отражающая изменения со стороны мышления, чувств и поведения. Важно различать "позитивные симптомы" (галлюцинации, мании, эксцентричное поведение) и "негативные симптомы" (социальный уход, эмоциональное притупление и др.). Существует большое количество подтипов или форм этого заболевания, в частности, дисорганизованная (гебефреническая), кататоническая, параноидная. Для простоты мы будем пользоваться термином шизофрения, имея ввиду, что это группа расстройств. Шизофрения распространена по всему миру. Ею болеют, в среднем 1%, населения. Заболевание возникает обычно в возрасте до 45 лет, зачастую, в подростковом возрасте, после чего приобретает хроническое течение.
Причина или причины шизофрении на сегодняшний день неизвестны, хотя многочисленные исследования были посвящены выяснению роли психологических, социальных, средовых, анатомических, генетических, биохимических и других факторов. В этом подразделе мы проанализируем, почему так трудно обнаружить генетическую основу для шизофрении, специфические структурные нарушения в мозге людей, страдающих этим заболеванием, а также рассмотрим дофаминергическую теорию его развития.
Генетическая основа
Проведенные генетические исследования показали большое значение генетического фактора в происхождении шизофрении. К примеру, вероятность развития шизофрении у ребенка, у которого оба родителя имеют это заболевание, составляет 39%. Среди монозиготных близнецов заболеваемость шизофренией совпадает в 47% случаев. Однако неизвестно, является ли шизофрения моногенным, полигенным или многофакторным состоянием.
Поиск генов, ответственных за развитие этого заболевания, привел к противоречивым результатам. Сначала было обнаружено, что соответствующий локус находится на 5 хромосоме. Однако эти данные не нашли подтверждения в последующих исследованиях, и вопрос остается открытым. Его решение зависит от отбора и скрупулезного анализа большого количества генов-кандидатов (таких, как гены для дофаминовых рецепторов или для ферментов, вовлеченных в обмен катехоламинов) и поиска мутаций, которые могут иметь значение в происхождении этого расстройства.
Структурные изменения в мозге больных шизофренией
В мозге многих больных шизофренией обнаруживаются изменения в медиальной лобной доле (парагиппокампальная извилина, гиппокамп и миндалина). Эти зоны участвуют в сборе и обработке информации из коры. К примеру, наблюдаемые изменения ориентация пирамидальных клеток гиппокампа могут отражать дефект нейрональной миграции. С другой стороны, эти изменения могут оказывать влияние вторичное действие на различные нейрохимические параметры в клетке. У больных шизофренией часто увеличены желудочки в мозге, однако разница по сравнению с нормой не всегда столь значительна, что бы использовать этот признак для диагностики.
Дофаминовая гипотеза происхождения шизофрении
В различные периоды времени возникали биохимические теории, в соответствии с которыми в возникновении шизофрении участвовали ацетилхолин, g-аминомасляная кислота (ГАМК), норадреналин, опиаты, пептиды и другие молекулы. Однако в последние 30 лет наибольшее внимание приковано к дофамину. В начале 50-х годов, сразу после успешного начала использования неролептиков (антипсихотиков) для лечения психозов, в том числе шизофрении, было замечено, что у шизофреников в ходе такой терапии развивается паркинсонизм. Подобные наблюдения навели на мысль о том, что нейролептики снижают уровень дофамина в организме. Эти и другие факты подтверждали участие дофамина в развитии шизофрении (табл. 18.10). В соответствии с гипотезой происхождения шизофрении эту патологию рассматривают как проявление гипердофаминергии. Противоположно, болезнь Паркинсона может рассматриваться как состояние гиподофаминергии.
Таблица 18.10. Аргументы в пользу дофаминергической гипотезы происхождения шизофрении
Нейролептики (антипсихотики) часто вызывают паркинсонизм, что привело к заключению об их способности снижать уровень дофамина. |
Действие нейролептиков направлено на снижение биологической активности дофамина в мезолимбических дофаминовых нейронах |
Другие лекарственные препараты (в частности, L-ДОФА, амфетамин), которые оказывают дофамин-миметическое действие на его метаболизм, вызывают симптомы шизофрении. |
Длительное лечение нейролептиками приводит к снижению уровня гомованилиновой кислоты в цереброспинальной жидкости и улучшению клинического состояния больных |
Выраженность антипсихотического действия большинства нейролептиков коррелирует с их связыванием с D2 рецепторами. |
При анализе трупного материала и результатов позитронной томографии отмечено, что в мозге больных шизофренией увеличена плотность D2 рецепторов |
Результаты биохимических исследований относительно выяснения роли дофамина в патогенезе шизофрении можно разделить на три группы. (1) Определение количества дофамина в ткани мозга. Большинство исследователей обнаружили его увеличение, хотя полученные ими данные значительно варьировали. (2) Определение метаболитов дофамина в ткани мозга и биологических жидкостях. Особое внимание было уделено гомованилиновой кислоте как наиболее важному метаболиту у человека. У больных шизофренией её уровень оказался существенно повышенным, он снижался в ходе лекарственной терапии. Однако данные опять значительно варьировали. (3) Определение дофаминовых (D) рецепторов. Количество D2 рецепторов увеличено в мозге при шизофрении. Важным обстоятельством явилось установление зависимости между выраженностью антипсихотического действия нейролептиков и их способностью конкурировать in vitro с дофамином за связывание с D2 рецепторами.
Получив такие данные, неудивительно, что усилия исследователей сосредоточились на дофаминовых рецепторах. Благодаря технологии клонирования генов, удалось обнаружить их 5 различных классов (табл.18.11). Все они являются трансмембранными белками - гликопротеинами, сопряженными с G-белками. Рецепторы D2, D3 и D4 очень похожи между собой. Известно, что нетипичный нейролептик клозапин (он не вызывает паркинсонизма как другие нейролептики) в 10 раз активнее связывается с рецепторами D4, чем - с D2.
Таблица 18.11. Некоторые свойства дофаминовых рецепторов
Различают, по меньшей мере, 5 различных классов (D1 - D5) рецепторов |
Это мембранные белки, часть из которых гликозилирована |
Большинство имеет в своем составе 7 трансмембранных доменов с петлями в цитозоле |
Большинство сопряжено с G-белками |
Действие одних опосредовано активацией аденилатциклазы (D1), действие других - её ингибированием (D2) |
Действие одного из подтипов D1 сопряжено с активацией фосфолипазы С |
Регуляция, по крайней мере, некоторых из них осуществляется путем фосфорилирования |
Конформационное соответствие большинства нейролептиков D2-рецептору отражает выраженность их терапевтического действия при шизофрении |
Различные рецепторы имеют разное анатомическое распределение |
Атипичный нейролептик клозапин связывается с рецептором D4 в 10 раз сильнее, чем - с D2 |
Все эти данные позволили несколько изменить первоначальную гипотезу. В настоящее время полагают, что для шизофрении характерно нарушение дофаминергической активности, которое не всегда сводится к её увеличению. В некоторых областях мозга дофаминергическая активность действительно может быть повышена, тогда как в других она в это же время снижена. Следует иметь в виду, что в развитии шизофрении могут принимать участие и другие нейромедиаторы, например, серотонин, самостоятельно или путем взаимодействия с дофаминергическими системами.
Доцент кафедры биологической химии, Коваль А. Н. ___________
19.10.2006
Министерство здравоохранения Республики Беларусь
УО «Гомельский государственный медицинский университет»
Кафедра биологической химии
Обсуждено на заседании кафедры (МК или ЦУНМС)
Протокол № _________________200__года
ЛЕКЦИЯ
по биологической химии
наименование дисциплины
для студентов _2__ курса лечебного факультета
Тема Биохимия мышечной ткани
Время 90 мин.
Учебные и воспитательные цели:
Дать понимание следующих предметов:
1. Основные функции и особенности метаболизма мышечной ткани.. Автономность мышечной ткани.
2. Механизм электромеханического сопряжения (теория мышечного сокращения). Роль ионов Ca, протеинкиназ. Характеристика и роль специфических белков мышечной ткани TnC, TnI, TnT, тропомиозина, актомиозина. Механизм расслабления. Роль АТФ-аз, АТФ. Ригорный комплекс.
3. Особенности метаболизма миокарда. Основные причины и механизм развития сердечной недостаточности. Обоснование биохимической коррекции сердечной недостаточности.
4. Гипокинетический синдром, основы патогенеза.
ЛИТЕРАТУРА
Основная
1 Материал лекций.
2 Березов Т. Т., Коровкин Б. Ф. Биологическая химия. М.: Медицина, 1990. С. 504–517; 1998. С. 645–660.
3 Николаев А. Я. Биологическая химия. М.: Высшая школа, 1989. С. 448–460. 2004. С. 518–530.
Дополнительная
4 Бэгшоу К. Мышечное сокращение. М.: Мир, 1985.
5 Марри Р. и др. Биохимия человека. М.: Мир, 1993. Т. 2. С. 332–351.
6 Уайт А. и др. Основы биохимии. М.: Мир, 1981. Т. 3. С. 1400–1424.
7 Албертс Б. и др. Молекулярная биология клетки. М.: Мир, 1994. Т. 2. С. 254–274.
МАТЕРИАЛЬНОЕ ОБЕСПЕЧЕНИЕ
1. Мультимедийная презентация
РАСЧЕТ УЧЕБНОГО ВРЕМЕНИ
№ п/п | Перечень учебных вопросов | Количество выделяемого времени в минутах |
1. | Основные функции мышечной ткани (локомоторная, регуляторная и метаболическая). Гипокинетический синдром, основы патогенеза. | |
2. | Особенности метаболизма мышечной ткани. Типы мышечных волокон, их характеристика (белые, красные, смешанные). Автономность мышечной ткани (запас субстратов, кислорода, макроэргов, набор ферментов, стабилизирующих АТФ. | |
3. | Механизм электромеханического сопряжения (теория мышечного сокращения). Роль ионов Ca, протеинкиназ. Характеристика и роль специфических белков мышечной ткани TnC, TnI, TnT, тропомиозина, актомиозина. Механизм расслабления. Роль АТФ-аз, АТФ. Ригорный комплекс. | |
4. | Особенности метаболизма миокарда (кислородная зависимость, аэробный тип обмена, ЛДГ1, ЛДГ2 и т.д.). Основные причины и механизм развития сердечной недостаточности (низкоэнергетическое состояние, увеличение кальция и т.д.). Обоснование биохимической коррекции сердечной недостаточности. |
Всего 90 мин