Тема 6. Биохимические процессы, вызываемые микроорганизмами, их значение в природе и практическое использование
Микроорганизмы обладают исключительно высокой биохимической активностью, поэтому разнообразные вещества, входящие в состав пищевых продуктов и различных материалов (белки, углеводы, жиры и др.) сравнительно легко поддаются их воздействию. Микроорганизмы вызывают сложные превращения различных минеральных и органических веществ - соединений серы, фосфора, железа, азота, углерода и других элементов. В процессе своей жизнедеятельности микробы непрерывно синтезируют одни соединения и расщепляют другие, получая при этом нужные для клетки химические вещества и энергию.
Превращения веществ под влиянием микробов происходят повсюду в природе как в аэробных, так и в анаэробных условиях. Многие из этих превращений имеют важное биологическое и народнохозяйственное значение.
При гнилостном бактериальном разложении в природе растительных и животных остатков содержащаяся в них сера обычно освобождается в виде сероводорода. Сероводород образуется также в результате восстановления серной, сернистой и серноватистой кислот под действием особых десульфофицирующих бактерий. Оба эти процесса приводят к накоплению в почве и водоемах ядовитого для живых организмов сероводорода, что приводит к их гибели. Образование и накопление сероводорода иногда наблюдается в озерах и лиманах, а воды Черного моря на глубине более 200 м настолько насыщены сероводородом, что ядовиты для живых организмов.
Поэтому окисление сероводорода, в результате которого он утрачивает ядовитые свойства, а сера, входящая в его состав, получает удобную для усвоения форму сернокислых солей, имеет очень важное значение. Такое окисление сероводорода постоянно происходит в природе под действием серобактерий.
Многообразные превращения соединений фосфора сводятся в основном к двум процессам: к расщеплению фосфоросодержащих органических соединений до образования минеральных веществ и к переводу труднорастворимых фосфорнокислых солей в легкорастворимые. Оба процесса происходят под влиянием различных микроорганизмов и играют большую роль в обогащении почвы фосфором и усвоении его растениями.
Широко распространены в природе превращения соединений железа, заключающиеся в переходе в результате окисления закисных солей этого элемента в окисные соединения под влиянием железобактерий.
Среди превращений соединений азота, вызываемых микробами, важнейшее место принадлежит процессам расщепления различных белковых веществ и мочевины, нитрификации, денитрификации и фиксации атмосферного азота.
Разложение белковых веществ (гниение) - явление, широко распространенное в природе. Поскольку изменения белков под действием микроорганизмов имеют особое значение для пищевой микробиологии, о них более подробно будет сказано отдельно.
Азотсодержащее вещество мочевина СО(МНа)2 является конечным продуктом распада белкового обмена в организме многих животных и человека. В моче человека содержится до 2,4% мочевины и в сутки ее выделяется с мочой около 30 г.
Население и животный мир земли ежегодно дают многие миллионы тонн мочевины, причем почти 50% этого вещества составляет азот, совершенно необходимый растениям и животным. Однако ни растения, ни животные не усваивают азот в форме мочевины. Огромное количество ее накапливалось бы в природе, если бы она не подвергалась разложению под действием особых аэробных бактерий - уробактерий. С помощью фермента уреазы эти бактерии разлагают мочевину с образованием аммиака и углекислого газа.
Распад органических азотистых веществ (в том числе и белков) до полной их минерализации с образованием аммиака называется аммонификацией.
Накапливающийся таким путем в форме аммонийных солей аммиак под влиянием особых бактерий может подвергаться дальнейшему превращению - нитрификации.
Нитрификацией называется процесс окисления аммиака (или солей аммония) в азотнокислые соли (нитраты). Возбудителями этого процесса, открытого в 1887 г. С. Н. Виноградским, являются нитрифицирующие бактерии.
Нитрифицирующие бактерии обитают в почве и в природных водах, они играют важную роль в обогащении почвы азотистыми веществами, необходимыми для питания растений.
Денитрификация означает восстановление солей азотной кислоты (нитратов) до молекулярного азота.
Нитраты, образующиеся в почве, используются для питания не только растениями, но и денитрифицирующими бактериями. Денитрифицирующие бактерии широко распространены в почве, навозе, в природных водах и т. д. Так как эти бактерии для своего питания используют нитраты, нужные растениям, и переводят их в не усвояемый растениями молекулярный азот, то деятельность денитрифицирующих бактерий может нанести большой ущерб плодородию почвы, особенно при плохой ее аэрации. Аэрация (насыщение воздухом) почвы в результате вспашки препятствует денитрификации ее бактериями, поскольку этот процесс протекает только в анаэробных условиях.
Способность денитрифицирующих бактерий восстанавливать нитраты до нитритов используется в пищевой промышленности при изготовлении некоторых мясных товаров, например, колбас. Для придания им устойчивой розово-красной окраски к сырью добавляют нитрат (селитру). Под действием бактерий он восстанавливается до нитрита, а последний, соединяясь с миоглобином (красящим веществом) мяса, придает ему розово-красную окраску.
Фиксация атмосферного азота означает связывание атмосферного азота некоторыми микроорганизмами. Уменьшение связанного азота в почве вследствие жизнедеятельности денитрифицирующих бактерий может в большей или меньшей степени возмещаться азотфиксирующими микроорганизмами, способными связывать (фиксировать) атмосферный азот, соединяя его с другими элементами. К числу таких микроорганизмов относятся некоторые водоросли и бактерии. Они играют большую роль в пополнении азотистых запасов почвы и повышении урожайности сельскохозяйственных культур.
Превращения соединений углерода, не содержащих азота, протекают в природе повсюду. Особое место среди этих превращений принадлежит различным бродильным процессам, многие из которых имеют важнейшее значение для технической микробиологии.
Брожением называется расщепление углеводов, спиртов, органических кислот под влиянием микроорганизмов. Среди бродильных процессов различают истинное брожение, протекающее в анаэробных условиях, и окислительные процессы, которые проходят в аэробных условиях и получили название - окислительные брожения.
К числу превращений безазотистых органических соединений относится также разрушение жира и жирных кислот. Среди многочисленных и сложных процессов, протекающих в природе под влиянием микробов, встречаются такие, которые имеют большое практическое значение в деятельности человека.
С точки зрения пищевой микробиологии особого внимания заслуживают различные виды брожения, разрушение жиров и гнилостные процессы.
Брожение -процесс анаэробного расщепления органических веществ, преимущественно углеводов, происходящий под влиянием микроорганизмов или выделенных из них ферментов. В ходе брожения в результате сопряженных окислительно-восстановительных реакций освобождается энергия, необходимая для жизнедеятельности микроорганизмов, и образуются химические соединения, которые микроорганизмы используют для биосинтеза аминокислот, белков, органических кислот, жиров и др. компонентов тела. Одновременно накапливаются конечные продукты брожения. В зависимости от их характера различают брожения спиртовое, молочнокислое, маслянокислое, пропионовокислое, ацетонобутиловое, ацетоноэтиловое и др. виды. Характер брожения, его интенсивность, количественные соотношения конечных продуктов, а также направление брожения зависят от особенностей его возбудителя и условий, при которых брожение протекает (pH, аэрация, субстрат и др.).
Спиртовое брожение
В 1836 г. французский ученый Каньяр де ла Тур установил, что спиртовое брожение связано с ростом и размножением дрожжей.
Химическое уравнение спиртового брожения: C6H12O6 2C2H5OH + 2CO2 было дано французскими химиками А. Лавуазье (1789 г.) и Ж. Гей-Люссаком (1815 г.). Л. Пастер пришёл к выводу (1857 г.), что спиртовое брожение могут вызывать только живые дрожжи в анаэробных условиях («брожение — это жизнь без воздуха»). В противовес этому немецкий ученый Ю. Либих упорно настаивал на том, что брожение происходит вне живой клетки. На возможность бесклеточного спиртового брожения впервые (1871 г.) указала русский врач-биохимик М. М. Манассеина. Немецкий химик Э. Бухнер в 1897, отжав под большим давлением дрожжи, растёртые с кварцевым песком, получил бесклеточный сок, сбраживающий сахар с образованием спирта и CO2. При нагревании до 50°C и выше сок утрачивал бродильные свойства. Все это указывало на ферментативную природу активного начала, содержащегося в дрожжевом соке. Русский химик Л. А. Иванов обнаружил (1905 г.), что добавленные к дрожжевому соку фосфаты в несколько раз повышают скорость брожения. Исследования отечественных биохимиков А. И. Лебедева, С. П. Костычева, Я. О. Парнаса и немецких биохимиков К. Нейберга, Г. Эмбдена, О. Мейергофа и др. подтвердили, что фосфорная кислота участвует в важнейших этапах спиртового брожения. Этот вид брожения имеет наибольшее народнохозяйственное значение.
Спиртовое брожение - процесс разложения сахара на спирт и углекислый газ. Возбудители – в основном дрожжи-сахаромицеты, для которых оно является способом получения энергии в анаэробных условиях, а также отдельными представителями мукоровых грибов и некоторыми бактериями. Однако грибы и бактерии вырабатывают спирта значительно меньше, чем дрожжи.
С6Н12О6 = 2С2Н5ОН + 2СО2 + 27 ккал
сахар этиловый углекислый
спирт газ
Сбраживание сахара представляет собой сложный биохимический процесс, поэтому приведенное выше уравнение выражает его лишь в общем суммарном виде.
Химизм процесса в общих чертах заключается в том, что получающаяся в ходе гликолиза пировиноградная кислота при участии фермента пируватдекарбоксилазы отщепляется СО2 и образуется уксусный альдегид.
Кроме этилового спирта и углекислого газа, при этом получаются также побочные продукты: уксусный альдегид, глицерин, сивушные масла (бутиловый, изобутиловый, амиловый и изоамиловый спирты), уксусная и янтарная кислоты и др.
Дрожжи в зависимости от условий брожения образуют разные количества продуктов брожения, среди них могут преобладать либо этиловый спирт и углекислота, либо глицерин и уксусная кислота. Причем сбраживают они не все сахара, а только моносахариды (например, глюкозу) и дисахариды (например, мальтозу). Полисахариды (крахмал) дрожжи сбраживать не способны, так как они не имеют нужного для расщепления полисахаридов фермента (амилазы).
Брожение зависит не только от условий, в которых оно протекает (концентрация сахара, кислотность среды, температура и количество накопившегося спирта), но также от вида и расы применяющихся дрожжей.
Наиболее благоприятная концентрация сахара в сбраживаемом субстрате для большинства дрожжей составляет около 15%, при более высоких концентрациях брожение замедляется, а затем прекращается вовсе. Однако некоторые дрожжи могут вызывать брожение и при содержании в среде сахара свыше 60%. При концентрации сахара в субстрате в количестве менее 10% брожение протекает очень вяло.
Нормальной для спиртового брожения является кислая среда с рН, равным 4 или 4,5.
В щелочной среде брожение протекает с образованием глицерина и уксусной кислоты.
Наилучшая температура брожения находится в пределах 28-32°С. При более высоких температурах брожение замедляется, а при 50°С оно прекращается. Понижение температуры снижает энергию брожения, хотя полностью оно не останавливается даже при 0°С.
На практике процессы брожения ведут при температуре в пределах 20-28°С при верховом брожении и в пределах 5-10°С при низовом брожении.
Верховое брожение протекает очень энергично, с образованием на поверхности субстрата большого количества пены и с бурным выделением углекислого газа, потоками которого дрожжи выносятся в верхние слои субстрата. Дрожжи, вызывающие такое брожение, называются верховыми дрожжами. После окончания брожения они оседают на дно бродильных сосудов.
Низовое брожение, вызываемое низовыми дрожжами, идет значительно спокойнее, с образованием небольшого количества пены. Углекислый газ выделяется постепенно и дрожжи остаются в нижнем слое сбраживаемого субстрата.
Верховые дрожжи применяют для получения спирта и пекарских дрожжей, низовые - для производства вина и пива. Для получения вина и пива иногда используют и верховые дрожжи.
Образующийся в процессе брожения спирт оказывает вредное воздействие на дрожжи. При накоплении в субстрате спирта более 16% к объему самого субстрата брожение прекращается, а угнетающее действие образовавшегося спирта начинает проявляться уже при концентрации 2-5%. Некоторые же расы специально приученных дрожжей способны выдерживать весьма высокие концентрации спирта - до 20-25%.
Спиртовое брожение нормально протекает в анаэробных условиях, создающихся в процессе самого брожения. Но поскольку дрожжи являются факультативными анаэробами, они могут разлагать сахар и в аэробных условиях с образованием углекислого газа и воды. Замечено, что в условиях хорошей аэрации дрожжи усиленно размножаются. Поэтому при производстве пекарских дрожжей бродящий субстрат продувают воздухом.
Для промышленного получения спирта в качестве сырья используют крахмалосодержащие продукты - картофель, зерновые культуры, а также отходы сахарного производства. В связи с тем, что дрожжи не способны сбраживать крахмал, его предварительно осахаривают с помощью солода, содержащего фермент амилазу. Солод получают из проросших зерен ячменя. В настоящее время для осахаривания применяют также грибной солод (грибы рода аспергиллус), который во многих отношениях является выгоднее ячменного солода. В результате осахаривания крахмала образуется дисахарид мальтоза - солодовый сахар.
Сбраживание углеводов (глюкозы, ферментативных гидролизатов крахмала, кислотных гидролизатов древесины) используется во многих отраслях промышленности: для получения этилового спирта, глицерина и других технических и пищевых продуктов. На спиртовом брожении основаны приготовление теста в хлебопекарной промышленности, виноделие и пивоварение.
Молочнокислое брожение –это превращение сахара молочнокислыми бактериями с образованием молочной кислоты.
По характеру брожения различают 2 группы молочнокислых бактерий:
1. гомоферментативные (стрептококкус лактис, сливочный стрептококк, ацидофильная палочка – обеспечивает тягучесть продуктов, болгарская палочка – содержатся в айране, йогуртах, простокваше и т.д., зерновая термофильная палочка (ее еще называют дельбрюковской палочкой) – применяется в производстве молочной кислоты из зерновых отходов, в хлебопечении, молочнокислая палочка – основной возбудитель брожения при квашении овощей, плодов и силосовании кормов) расщепляют моносахариды с образованием двух молекул молочной кислоты в соответствии с суммарным уравнением:
C6H12O6 = 2CH3CHOH-COOH + Q
Химизм заключается в том, что образующаяся в процессе гликолиза пировиноградная кислота при участии фермента лактикодегидрогеназы восстанавливается до молочной кислоты, почти без побочных продуктов.
2. гетероферментативные (капустная палочка – при сбраживании сахаров кроме молочной образует уксусную кислоту, этиловый спирт, СО2, целая группа кишечных бактерий – например, бифидобактерии) ведут сбраживание с образованием молочной кислоты, уксусной кислоты, этилового спирта и CO2, а также образуют небольшое количество ароматических веществ - диацетила, эфиров и другие вещества.
Молочнокислое брожение представляет собой разложение сахара под действием молочнокислых бактерий с образованием молочной кислоты. В общем суммарном виде его можно представить следующим уравнением:
С6Н12О6 = 2С3Н6О3 + 18 ккал.
Это брожение часто наблюдается в молоке и вызывает его скисание. Отсюда и получили свое название вид брожения, бактерии, вызывающие его, а также основной продукт брожения - кислота. Молочнокислые бактерии бывают шаровидной и палочковидной формы. Они неподвижны, спор не образуют и являются факультативными анаэробами.
Различные виды молочнокислых бактерий в равных условиях продуцируют разное количество кислоты, что объясняется их неодинаковой кислотоустойчивостью. Палочковидные бактерии образуют больше кислоты, чем шаровидные (кокки).
Молочнокислые бактерии способны сбраживать только моно- и дисахариды и совсем не сбраживают крахмал и другие полисахариды, так как не выделяют соответствующих ферментов.
Некоторые из этих бактерий вырабатывают антибиотические вещества, действующие против возбудителей кишечных заболеваний.
Молочнокислые бактерии широко распространены в природе, они постоянно встречаются в почве, на различных растениях, на плодах и овощах, в молоке и т. д.
Наибольшее значение имеют следующие молочнокислые бактерии: молочнокислый стрептококк, болгарская, ацидофильная, сырная, дельбрюковская, огуречная, капустная палочки и др.
Молочнокислый стрептококк - соединенные попарно или в короткие цепочки шаровидные бактерии. Лучше всего развиваются при температуре 30-35°С, их температурный минимум около 10°С. При брожении накапливают до 1% кислоты. Широко применяются для приготовления молочнокислых продуктов (простокваши, кефира, сметаны, творога и др.).
Болгарская палочка нередко образует длинные цепочки, выделена из болгарской простокваши. Представляет собой неподвижную, бесспоровую палочку. Наилучшая для ее развития температура 40-45°С, температурный минимум 20°С. В молоке образует до 3,5% молочной кислоты.
Ацидофильная палочка получена из выделений кишечника грудного ребенка. Имеет температурный оптимум около 40°С, минимальная температура развития 20°С. В молоке накапливает до 2,2% молочной кислоты. Применяется для приготовления молочнокислых продуктов - ацидофилина и ацидофильного молока.
Сырная палочка имеет температурный оптимум около 40°С, используется в сыроделии.
Дельбрюковская палочка представляет собой одиночные или собранные в короткие цепочки клетки, не образующие спор. Температурный оптимум 45°С. Образует в среде до 2,5% кислоты. Применяется для промышленного получения молочной кислоты, а также в производстве хлебных заквасок.
Огуречная и капустная палочки развиваются при квашении овощей. Молочнокислое брожение имеет важное промышленное значение. Оно применяется в производстве молочнокислых продуктов, в хлебопечении, в процессах квашения овощей и силосования кормов, при изготовлении кваса, в производстве молочной кислоты и т. д.
Молочнокислые бактерии относятся к числу постоянных обитателей молока и вызывают в нем ряд биохимических процессов. Кроме этих бактерий, в молоке могут находиться различные гнилостные бактерии. Количество микроорганизмов и их состав в молоке могут колебаться в значительных пределах. Свежевыдоенное молоко содержит микроорганизмы, попадающие в него из протоков молочных желез вымени, в которых они обитают постоянно.
Нередко гнилостных бактерий в только что выдоенном молоке оказывается в несколько раз больше, чем молочнокислых бактерий. Однако развивающиеся молочнокислые бактерии образуют молочную кислоту, которая подавляет жизнедеятельность гнилостных бактерий.
Через некоторое время в молоке остаются главным образом молочнокислые бактерии, продолжающие усиленно размножаться и накапливать молочную кислоту, под действием которой молоко вскоре свертывается. Полученная таким путем простокваша (самоквас) обычно имеет неприятный привкус и запах, так как в ней содержатся продукты жизнедеятельности других микроорганизмов. Употребление в пищу молока-самокваса опасно для здоровья, так как в нем могут находиться патогенные микроорганизмы, сохранившие жизнеспособность, несмотря на образование молочной кислоты.
При получении молочнокислых продуктов (простокваши, кефира, ацидофилина и др.) в производственных условиях молоко предварительно подвергают пастеризации, а затем заквашивают специальными заквасками, содержащими культуры молочнокислых бактерий. Это дает возможность получать молочнокислые продукты определенного и высокого качества.
Молочнокислое брожение в хлебопечении позволяет предотвратить развитие вредных бактерий в тесте, вызывающих картофельную болезнь (тягучесть) хлеба, а также способствует улучшению вкусовых свойств хлеба.
Молочная кислота, образующаяся в результате этого брожения, придает особый вкус квашеным овощам и препятствует развитию гнилостных бактерий.
При промышленном получении молочной кислоты в качестве сырья используют крахмал, патоку и другие сахаристые материалы. Молочную кислоту применяют в кондитерском производстве и в производстве безалкогольных напитков.
Пропионовокислое брожение
Пропионово-кислое брожение - это процесс превращения сахара или молочной кислоты в пропионовую и уксусную кислоты с образованием углекислоты и воды:
3C6H12О6 = 4С2Н5СООН + 2СН3СООН + 2СО2 + 2H2O
или
3С3Н6О3 = 2С2Н5СООН + СН3СООН + СО2 + Н2О
Брожение вызывается пропионово-кислыми бактериями. Это короткие, неподвижные, бесспоровые анаэробные палочки, оптимальная температура развития которых около 30°С. Пропионово-кислые бактерии близки к молочнокислым бактериям и нередко развиваются вместе с ними.
Следует отметить, что пропионово-кислому брожению могут подвергаться не только молочная кислота, но и ее соли. Это брожение имеет важное значение в созревании сыров. Молочная кислота (вернее, ее кальциевая соль), образующаяся в результате жизнедеятельности молочнокислых бактерий, под влиянием пропионово-кислых бактерий превращается в пропионовую кислоту, уксусную кислоту и углекислый газ. Выделение углекислоты приводит к образованию глазков в сыре, придающих ему характерный ноздреватый рисунок. Пропионовая и уксусная кислоты способствуют образованию специфического сырного вкуса и запаха.
Пропионовокислые бактерии используются также для получения витамина B12.
Маслянокислое брожение
При маслянокислом брожении происходит процесс разложения сахара под действием бактерий в анаэробных условиях с образованием масляной кислоты, углекислого газа и водорода. Оно протекает по уравнению:
С6Н12О6 = С3Н7СООН + 2СО2 + 2Н2 + 20 ккал
В качестве побочных продуктов при этом получаются этиловый и бутиловый спирты, уксусная кислота и др. Такое брожение может протекать в молоке и молочных продуктах, придавая им неприятные вкус и запах, характерные для масляной кислоты. Маслянокислые бактерии, вызывающие это брожение, представляют собой перитрихиально жгутованные подвижные, спорообразующие палочки, температурный оптимум их развития находится в пределах 30-40°С. Они являются строгими анаэробами и могут размножаться только при полном отсутствии кислорода воздуха или при очень незначительном его содержании. Споры, образуемые маслянокислыми бактериями, весьма устойчивы к неблагоприятным воздействиям, выдерживают кипячение в течение нескольких минут и погибают только при длительной стерилизации. Располагаются они либо в середине, либо ближе к одному из концов клетки, придавая ей форму веретена или теннисной ракетки.
Маслянокислые бактерии способны сбраживать как простые сахара, так и более сложные углеводы - крахмал, пектиновые вещества и другие, а также глицерин. Эти бактерии широко распространены в природе, находясь в почве, в иле озер, прудов и болот, в скоплениях различных остатков и отбросов, навозе, загрязненной воде, молоке, сыре и т. д. Вызываемое этими бактериями брожение имеет важное значение в превращениях веществ в природе.
В народном хозяйстве маслянокислое брожение может принести большой вред, так как маслянокислые бактерии способны вызывать массовую гибель картофеля и овощей, прогоркание молока и вспучивание сыров, порчу консервов и т. д.
На маслянокислые бактерии подавляюще действует кислая реакция среды, поэтому там, где развиваются молочнокислые бактерии, выделяющие молочную кислоту, жизнедеятельность маслянокислых бактерий приостанавливается. Если же в заквашенных овощах медленно накапливается молочная кислота, то они могут быть испорчены в результате размножения в них маслянокислых бактерий. Эти бактерии вызывают порчу пастеризованного молока, в котором исключено молочнокислое брожение, а также сырого молока при длительном хранении его на холоде, когда деятельность молочнокислых бактерий ослаблена.
Развиваясь во влажной муке, маслянокислые бактерии придают ей прогорклый вкус. Маслянокислое брожение находит практическое применение в производстве масляной кислоты, которая широко используется в технике.
Брожение пектиновых веществ
Пектиновые вещества содержатся в растениях и играют важную роль в строении растительных тканей. Эти вещества образуют межклеточные пластинки и склеивают между собой растительные клетки, объединяя их в единое целое в ткань. Пектиновыми веществами богаты мякоть плодов, ягод, корнеплодов, листья растений и т. д. Особенно много их в яблоках и других плодах, которые используют для получения желеобразной массы, широко применяемой в кондитерском производстве (при изготовлении мармелада, пастилы и др.). Эти вещества состоят из пектиновых кислот и углеводов. В воде они не растворяются. Однако при кипячении пектиновые вещества из нерастворимой формы (протопектина) переходят в растворимую (пектин), вследствие чего связь между клетками ослабляется или разрушается полностью. Этим объясняется размягчение растительных продуктов после продолжительного кипячения.
Под действием бактерий пектиновые вещества подвергаются брожению, близкому к маслянокислому, в результате которого они разлагаются на более простые вещества с образованием масляной и уксусной кислот, этилового спирта, углекислого газа, водорода и др.
Брожение приводит к разрушению связи между клетками и распаду растительных тканей. Возбудителями брожения являются подвижные, спорообразующие бактерии, относящиеся к факультативным анаэробам.
Брожение пектиновых веществ имеет большое значение в природе, так как приводит к разрушению различных растительных материалов. Оно постоянно протекает в почве и воде, содержащей растительные остатки.
Пектиновое брожение используют при водяной мочке льна и других волокнистых растений.
Разложение клетчатки
Клетчатка (целлюлоза) является главной составной частью растительных тканей. Она представляет собой сложный полисахарид, обладающий большой химической устойчивостью. Однако некоторые бактерии и грибы выделяют ферменты, разрушающие клетчатку. Разложение клетчатки постоянно происходит в природе и может протекать как в анаэробных, так и в аэробных условиях. Брожение целлюлозы заключается в разрушении клетчатки в анаэробных условиях с образованием масляной и уксусной кислот, углекислого газа, водорода или метана. Сущность брожения клетчатки вскрыта в 1902 г. Омелянским, который выделил две разновидности бактерий, разрушающих клетчатку: одна из них вызывает брожение целлюлозы с образованием преимущественно водорода (водородное брожение), а другая - метана (метановое брожение).
Бактерии Омелянского представляют собой спорообразующие анаэробные палочки, имеющие оптимальную температуру развития около 30°С; они широко распространены в природе.
Брожение клетчатки вызывают также некоторые термофильные бактерии. Они образуют споры и являются факультативными анаэробами, хорошо развивающимися при температуре 60-65°С.
Брожение клетчатки находит использование в технике при получении горючих газов, а также уксусной и муравьиной кислот из опилок, соломы и других растительных материалов, богатых целлюлозой.
Аэробное разрушение клетчатки происходит под действием различных микроорганизмов - грибов и аэробных бактерий. К их числу относятся многие грибы из родов пенициллиум, аспергиллус, ботритис, кладоспориум и других, а также актиномицеты и миксобактерии. Аэробное разрушение клетчатки имеет огромное значение в процессах разложения различных растительных остатков и их минерализации в природе. В результате разложения клетчатки, а также других органических соединений, в почве под влиянием грибов и бактерий образуется гумус - темноокрашеные вещество, характеризующее черноземную почву.
Окислительные процессы
Среди окислительных процессов наибольшее практическое значение имеют уксуснокислое и лимоннокислое брожение.
Оба эти брожения относятся к числу окислительных процессов, связанных с жизнедеятельностью микроорганизмов в аэробных условиях с использованием кислорода воздуха и называются брожениями лишь условно.
Уксуснокислое брожение
Уксуснокислым брожением называется окисление этилового спирта в уксусную кислоту под влиянием уксуснокислых бактерий.
Оно может быть выражено таким суммарным уравнением:
С2Н5ОН + О2 = СН3СООН + Н2О
Это брожение, как и спиртовое, известно с давних времен. Человек с давних пор наблюдал, что на поверхности вина или пива, оставленных в открытом сосуде, образуется сероватая пленка, а содержимое превращается в уксус. Микробиологическая природа этого процесса была впервые установлена в 1862 г. Пастером.
Возбудителями уксуснокислого брожения являются уксуснокислые бактерии, составляющие многочисленную группу палочковидных, бесспоровых, аэробных бактерий. Среди них встречаются подвижные и неподвижные формы. Различаются они также размерами клеток, разной устойчивостью к спирту и способностью накапливать больше или меньше уксусной кислоты.
Уксуснокислые бактерии выдерживают концентрацию спирта в 10-12% и образуют в среде от 6 до 11,5% уксуса.
Оптимальная температура их развития колеблется в пределах 20-35°С. Уксуснокислые бактерии могут соединяться в длинные нити или образовывать пленки на поверхности субстрата. Они широко распространены в природе и встречаются на зрелых ягодах, плодах, в вине, пиве, квасе, квашеных овощах и т. д. На практике уксуснокислое брожение используется для получения уксуса.
Исходным субстратом для получения уксуса служит виноградное или плодово-ягодное вино, а чаще всего - раствор, содержащий спирт и подкисленный уксусом с целью создания благоприятных условий уксуснокислым бактериям. В такой раствор добавляют также необходимые для бактерий минеральные соли и другие питательные вещества.
После брожения содержание уксусной кислоты в субстрате может доходить до 9%. Такой уксус разбавляют до содержания 4,5-6% уксусной кислоты, а затем направляют в продажу.
Лимоннокислое брожение
При лимоннокислом брожении сахар под воздействием грибов окисляется в лимонную кислоту. Эту кислоту раньше получали из сока цитрусовых – лимонов и апельсинов. В настоящее время ее производят в основном путем брожения. В качестве возбудителя лимоннокислого брожения применяется гриб асспергиллус нигер.
Сырьем для производства лимонной кислоты служит сахаросодержащий продукт - меласса. Мелассный раствор, включающий около 15% сахара и необходимые грибу питательные вещества, разливают в плоские открытые сосуды и засевают спорами гриба. Сосуды помещают в бродильные камеры, которые хорошо проветривают. Процесс брожения продолжается в течение 6-8 дней при температуре около 30°С.
По окончании брожения мелассный раствор из-под пленки гриба сливают, затем из него выделяют лимонную кислоту, которую подвергают последующей очистке и кристаллизации. Выход лимонной кислоты составляет 50-60% от количества израсходованного сахара.
В последнее время начинают применять новый метод получения лимонной кислоты. При этом гриб находится не на поверхности сбраживаемого субстрата, а внедряется своим мицелием в толщу субстрата, который энергично насыщают воздухом. Такой способ ускоряет процесс накопления лимонной кислоты в сбраживаемом субстрате.
Лимонная кислота находит широкое практическое применение, она используется, например, при изготовлении кондитерских и кулинарных изделий, безалкогольных напитков и т. д.
Сбраживание белков
Некоторые бактерии из рода Clostridium - гнилостные анаэробы - способны сбраживать не только углеводы, но и аминокислоты. Эти бактерии более приспособлены к использованию белков, расщепляемых ими при помощи протеолитических ферментов до аминокислот, которые затем подвергаются брожению. Процесс сбраживания белков имеет значение в круговороте веществ в природе.
Разрушение жиров
Различные физико-химические факторы, а также микроорганизмы, могут вызывать разложение и порчу жиров.
Начальной стадией разрушения жиров является их гидролиз (омыление) на глицерин и жирные кислоты. Этот процесс легко происходит при высокой температуре под действием щелочей или кислот. Под влиянием ферментов (липаз) гирдолиз протекает при обычной температуре. Омыление жиров при воздействии ферментов происходит, например, во время переваривания жиров в пищеварительном тракте животных. Ферменты, разрушающие жиры, вырабатываются многими микроорганизмами.
Образовавшиеся в результате гидролитического расщепления глицерин и жирные кислоты затем подвергаются дальнейшему разрушению. Наиболее легко разрушается глицерин, служащий для многих микроорганизмов источником углерода. Разрушение глицерина может происходить в аэробных и анаэробных условиях.
Жирные кислоты менее подвержены разрушению, однако и они постепенно окисляются, преимущественно в аэробных условиях. Конечной стадией разрушения глицерина и жирных кислот является их минерализация, сопровождающаяся образованием углекислого газа и воды.
Наиболее активно разлагают жиры некоторые пигментные и флуоресцирующие бактерии, микрококки и актиномицеты, а также плесневые грибы, особенно оидиум лактис и многие виды из родов аспергиллус и пенициллиум.
Разложение жиров микроорганизмами в почве и воде происходит постоянно, оно является составной частью общего круговорота веществ в природе.
Порча пищевых жиров микробами нередко наносит большой ущерб. Развитию в жирах микроорганизмов способствует наличие в них воды и органических примесей. Поэтому чем меньше влаги содержится в жире и чем полнее он очищен от примесей, тем лучше сохраняется.
Гнилостные процессы
Гниением называется разложение белковых веществ микроорганизмами. Белки являются важнейшей составной частью живого и отмершего органического мира, содержатся во многих пищевых продуктах. Белки характеризуются большим разнообразием и сложностью строения.
Способность разрушать белковые вещества присуща многим микроорганизмам. Одни микроорганизмы вызывают неглубокое расщепление белка, другие могут разрушать его более глубоко. Гнилостные процессы постоянно протекают в природных условиях и нередко возникают в продуктах и изделиях, содержащих белковые вещества. Разложение белка начинается с его гидролиза под влиянием протеолитических ферментов, выделяемых микробами в окружающую среду. Гидролиз белков протекает в несколько стадий. Первичными продуктами гидролиза являются пептоны и полипептиды, мало отличающиеся от и