Инетерейкин-37 и Инетерейкин-38

Два представителя семейства IL-37 и IL-38 пока что не имеют определенного и общепризнанного значения. Открытые впервые in silico в начале 2000-ых, эти цитокины только недавно начали открывать нам свои функции.

Интерлейкин-37 это единственный представитель семейства, не имеющий аналога у мышей. У этого цитокина существует множество сплайс-изоформ, но самой распространённой и изученной является IL-37b. Для этого цитокина была показана возможность расщепления in vitro каспазой-1, однако сайт расщепления отличается от канонического сайта каспазы-1 в молекулах остальных представителей семейства интерлейкина-1. [43] Исследования показали, что IL-37b способен связываться с рецептором IL-18 и IL-18BP, однако, это связывание имеет очень низкую аффинность и IL-37 не проявляет ни антагонистической ни агонистической активности на IL-18. [65] При этом, клетки, трансфецированные геном IL-37 под мощным промотором, обнаруживали более слабый ответ на индукторы TIR-сигнальной трансдукции: провоспалительные цитокины и PAMPs. IL-37 может оказаться внутриклеточным негативным регулятором иммунитета. [78] IL-37b имеет ядерную локализацию, причем в отличие от IL-1α и IL-33 пропептидным фрагментом. Также показано прямое взаимодействие IL-37 с сигнальной молекулой касказа рецептора TGF-β – SMAD3. [32] Может оказаться, что IL-37 – это фактор модулирующий ответ на уровне транскрипционной активности генов.

Интерлейкин-38 – это последний на данный момент, одиннадцатый член семейства интерлейкина-1. IL-38 имеет высокое сходство аминокислотной последовательности с IL-36Ra (46%) и IL-1Ra (41%), [46]. По всей видимости, IL-38 делит специфический рецептор с IL-36, имеет сравнимую с IL-36Ra аффинность связывания. Этот цитокин подавляет продукцию IL-17 и IL-22 T-лимфоцитами, подавляет выработку IL-8 другими отвечающими на IL-36γ клетками. Анализ паттерна экспрессии гена IL-38 - IL1F11 показал его высокое присутствие в коже и B-клетках миндалин. [87] По совокупности этих данных сейчас можно считать IL-38 специфическим рецепторным антагонистом IL-36, аналогичным IL-36Ra, пока, однако, не ясным остается его дублирующее значение.

Заключение

Семейство цитокинов интерлейкина-1 как видно из приведенного выше анализа является очень разнообразным семейством взаимосвязанных сигнальных молекул. Плейотропные свойства, наличие дублеров и рецепторных антагонистов делает это семейство очень интересным с точки зрения системной биологии и нейроиммуноэндокринологии. Большое количество патологий, опосредованных дисрегуляцией представителей этой группы в системе цитокинов создает обширные возможности для обнаружения в нем перспективных молекулярных фармакологических мишеней.

Список литературы

1. А.А. Ярилин, 2.5.5.5. Провоспалительные цитокины Иммунология: учебник – М. : ГЭОТАР-Медиа, 2010 ISBN 978-5-9704-1319-7. стр. 209-210.

2. Варюшина Е. А. Провоспалительные цитокины в регуляции процессов воспаления и репарации : дис. – СПб. : ЕА Варюшина, 2012.

3. Кетлинский С.А, Симбирцев А.С. Цитокины – СПб : ООО ”Издательство Фолиант”, 2008 ISBN 978-5-939929-171-2

4. Akira S., Takeda K. Toll-like receptor signalling //Nature Reviews Immunology. – 2004. – Т. 4. – №. 7. – С. 499-511.

5. Andre R. et al. Regulation of expression of the novel IL‐1 receptor family members in the mouse brain //Journal of neurochemistry. – 2005. – Т. 95. – №. 2. – С. 324-330.

6. Asseldonk E. J. P. et al. The Effect of the Interleukin‐1 Cytokine Family Members IL‐1F6 and IL‐1F8 on Adipocyte Differentiation //Obesity. – 2010. – Т. 18. – №. 11. – С. 2234-2236.

7. Bachmann M. et al. IL-36γ/IL-1F9, an Innate T-bet Target in Myeloid Cells //Journal of Biological Chemistry. – 2012. – Т. 287. – №. 50. – С. 41684-41696.

8. Berglöf E. et al. IL-1Rrp2 expression and IL-1F9 (IL-1H1) actions in brain cells //Journal of neuroimmunology. – 2003. – Т. 139. – №. 1. – С. 36-43.

9. Blumberg H. et al. Opposing activities of two novel members of the IL-1 ligand family regulate skin inflammation //The Journal of experimental medicine. – 2007. – Т. 204. – №. 11. – С. 2603-2614.

10. Bode J. G. et al. Hepatic acute phase proteins–regulation by IL-6-and IL-1-type cytokines involving STAT3 and its crosstalk with NF-κB-dependent signaling //European journal of cell biology. – 2012. – Т. 91. – №. 6. – С. 496-505.

11. Brough D., Rothwell N. J. Caspase-1-dependent processing of pro-interleukin-1β is cytosolic and precedes cell death //Journal of cell science. – 2007. – Т. 120. – №. 5. – С. 772-781.

12. Bufler, P. et al. A complex of the IL‑1 homologue IL‑1F7b and IL‑18‑binding protein reduces IL‑18 activity. Proc. Natl Acad. Sci. USA 99, 13723–13728 (2002).

13. Busfield S. J. et al. Identification and gene organization of three novel members of the IL-1 family on human chromosome 2 //Genomics. – 2000. – Т. 66. – №. 2. – С. 213-216.

14. Carrier Y. et al. Inter-regulation of Th17 cytokines and the IL-36 cytokines in vitro and in vivo: implications in psoriasis pathogenesis //Journal of Investigative Dermatology. – 2011. – Т. 131. – №. 12. – С. 2428-2437.

15. Carriere V, Roussel L, Ortega N, Lacorre DA, Americh L, et al. 2007. IL-33, the IL-1-like cytokineligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. Proc. Natl. Acad. Sci. USA104:282–87

16. Casanova J. L., Abel L., Quintana-Murci L. Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics //Annual review of immunology. – 2011. – Т. 29. – С. 447-491.

17. Chen C. S. et al. IL-36 cytokines are over-expressed in psoriasis, induce keratinocyte chemokine expression and alter antigen-presenting cell phenotype and function //JOURNAL OF INVESTIGATIVE DERMATOLOGY. – 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA : NATURE PUBLISHING GROUP, 2012. – Т. 132. – С. S1-S1.

18. Chen K. W. et al. The neutrophil NLRC4 inflammasome selectively promotes IL-1β maturation without pyroptosis during acute Salmonella challenge //Cell reports. – 2014. – Т. 8. – №. 2. – С. 570-582.

19. Chustz R. T. et al. Regulation and function of the IL-1 family cytokine IL-1F9 in human bronchial epithelial cells //American Journal of Respiratory Cell and Molecular Biology. – 2011. – Т. 45. – №. 1. – С. 145.

20. D'Erme A. M. et al. IL-36γ (IL-1F9) Is a Biomarker for Psoriasis Skin Lesions //Journal of Investigative Dermatology. – 2014.

21. Dinarello C. A. Biologic basis for interleukin-1 in disease //Blood. – 1996. – Т. 87. – №. 6. – С. 2095-2147.

22. Dinarello C. A. et al. Interleukin-18 and IL-18 binding protein //Frontiers in immunology. – 2013. – Т. 4.

23. Dinarello C. A. Immunological and inflammatory functions of the interleukin-1 family //Annual review of immunology. – 2009. – Т. 27. – С. 519-550.

24. Dinarello C. A. Keep up the heat on IL-1 //Blood. – 2012. – Т. 120. – №. 13. – С. 2538-2539.

25. Donath M, Whitmore J, Bauer R, Scannon P,Weder C, et al. 2008. Xoma 052, an anti-IL-1b antibody, in a double-blind, placebo-controlled, dose-escalation study of the safety and pharmacokinetics in patients with type 2 diabetes mellitus, a new approach to therapy. Diabetologia 51:433

26. Dunn E. et al. Annotating genes with potential roles in the immune system: six new members of the IL-1 family //Trends in immunology. – 2001. – Т. 22. – №. 10. – С. 533-536.

27. Ellingford J. M. et al. A novel mutation in IL36RN underpins childhood pustular dermatosis //Journal of the European Academy of Dermatology and Venereology. – 2015.

28. Emsley H. C. A. et al. A randomised phase II study of interleukin-1 receptor antagonist in acute stroke patients //Journal of Neurology, Neurosurgery & Psychiatry. – 2005. – Т. 76. – №. 10. – С. 1366-1372.

29. Farooq M. et al. Mutation analysis of the IL36RN gene in 14 Japanese patients with generalized pustular psoriasis //Human Mutation. – 2013. – Т. 34. – №. 1. – С. 176-183.

30. Fibbe W. E. et al. Interleukin-1 (22-K factor) induces release of granulocyte-macrophage //Blood. – 1986. – Т. 68. – №. 6. – С. 13-16.

31. Fink S. L., Cookson B. T. Caspase‐1‐dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages //Cellular microbiology. – 2006. – Т. 8. – №. 11. – С. 1812-1825.

32. Grimsby, S. et al. Proteomics‑based identification of proteins interacting with Smad3: SREBP‑2 forms a complex with Smad3 and inhibits its transcriptional activity. FEBS Lett. 577, 93–100 (2004).

33. Günther S., Sundberg E. J. Molecular determinants of agonist and antagonist signaling through the IL-36 receptor //The Journal of Immunology. – 2014. – Т. 193. – №. 2. – С. 921-930.

34. Hamon Y. et al. Interleukin-1β secretion is impaired by inhibitors of the ATP binding cassette transporter, ABC1 //Blood. – 1997. – Т. 90. – №. 8. – С. 2911-2915.

35. Horai R. et al. Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in interleukin 1 receptor antagonist–deficient mice //The Journal of experimental medicine. – 2000. – Т. 191. – №. 2. – С. 313-320.

36. Hüffmeier U. et al. Successful therapy with anakinra in a patient with generalized pustular psoriasis carrying IL36RN mutations //British Journal of Dermatology. – 2014. – Т. 170. – №. 1. – С. 202-204.

37. Itoh N., Ornitz D. M. Evolution of the Fgf and Fgfr gene families //Trends in Genetics. – 2004. – Т. 20. – №. 11. – С. 563-569.

38. Johnston A. et al. IL-1F5,-F6,-F8, and-F9: a novel IL-1 family signaling system that is active in psoriasis and promotes keratinocyte antimicrobial peptide expression //The Journal of Immunology. – 2011. – Т. 186. – №. 4. – С. 2613-2622.

39. Kadhim H. J., Duchateau J., Sébire G. Cytokines and brain injury: invited review //Journal of intensive care medicine. – 2008. – Т. 23. – №. 4. – С. 236-249.

40. Kato Z. et al. The structure and binding mode of interleukin-18 //Nature Structural & Molecular Biology. – 2003. – Т. 10. – №. 11. – С. 966-971.

41. Kim SH, Azam T, Novick D, Yoon DY, Reznikov LL, et al. 2002. Identification of amino acid residues critical for biological activity in human interleukin-18. J. Biol. Chem. 14:14

42. Kumar S. et al. Identification and initial characterization of four novel members of the interleukin-1 family //Journal of Biological Chemistry. – 2000. – Т. 275. – №. 14. – С. 10308-10314.

43. Kumar, S. et al. Interleukin‑1F7B (IL‑1H4/IL‑1F7) is processed by caspase‑1 and mature IL‑1F7B binds to the IL‑18 receptor but does not induce IFN‑γ production. Cytokine 18, 61–71 (2002).

44. Leung BP, Xu D, Culshaw S, McInnes IB, Liew FY. 2004. A novel therapy of murine collagen-induced arthritis with soluble T1/ST2. J. Immunol. 173:145–50

45. Lian L. H. et al. The double-stranded RNA analogue polyinosinic-polycytidylic acid induces keratinocyte pyroptosis and release of IL-36γ //Journal of Investigative Dermatology. – 2012. – Т. 132. – №. 5. – С. 1346-1353.

46. Lin, H. et al. Cloning and characterization of IL‑1HY2, a novel interleukin‑1 family member. J. Biol. Chem.276, 20597–20602 (2001).

47. Liu X. et al. Structural insights into the interaction of IL-33 with its receptors //Proceedings of the National Academy of Sciences. – 2013. – Т. 110. – №. 37. – С. 14918-14923.

48. Lukens J. R. et al. RIP1-driven autoinflammation targets IL-1 [agr] independently of inflammasomes and RIP3 //Nature. – 2013. – Т. 498. – №. 7453. – С. 224-227.

49. MacKenzie A. et al. Rapid secretion of interleukin-1β by microvesicle shedding //Immunity. – 2001. – Т. 15. – №. 5. – С. 825-835.

50. Magne D. et al. The new IL-1 family member IL-1F8 stimulates production of inflammatory mediators by synovial fibroblasts and articular chondrocytes //Arthritis Research and Therapy. – 2006. – Т. 8. – №. 3. – С. R80.

51. March C. J. et al. Cloning, sequence and expression of two distinct human interleukin-1 complementary DNAs //Nature. – 1984. – Т. 315. – №. 6021. – С. 641-647.

52. Margetic S. Inflammation and hemostasis //Biochemia medica. – 2012. – Т. 22. – №. 1. – С. 49-62.

53. Marrakchi S. et al. Interleukin-36–Receptor Antagonist Deficiency and Generalized Pustular Psoriasis //New England Journal of Medicine. – 2011. – Т. 365. – №. 7. – С. 620-628.

54. Martin M. U., Wesche H. Summary and comparison of the signaling mechanisms of the Toll/interleukin-1 receptor family //Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. – 2002. – Т. 1592. – №. 3. – С. 265-280.

55. Martin U. et al. Externalization of the leaderless cytokine IL-1F6 occurs in response to lipopolysaccharide/ATP activation of transduced bone marrow macrophages //The Journal of Imminflaunology. – 2009. – Т. 183. – №. 6. – С. 4021-4030.

56. Miller AM, XuD, Asquith DL, Denby L, Li Y, et al. 2008. IL-33 reduces the development of atherosclerosis. J. Exp. Med. 205:339–46

57. Mutamba S. et al. Expression of IL‐1Rrp2 by human myelomonocytic cells is unique to DCs and facilitates DC maturation by IL‐1F8 and IL‐1F9 //European journal of immunology. – 2012. – Т. 42. – №. 3. – С. 607-617.

58. Netea MG, Joosten LA, Lewis E, Jensen DR, Voshol PJ, et al. 2006. Deficiency of interleukin-18 in mice leads to hyperphagia, obesity and insulin resistance. Nat. Med. 12:650–56

59. Nicklin M. J. H. et al. A sequence-based map of the nine genes of the human interleukin-1 cluster //Genomics. – 2002. – Т. 79. – №. 5. – С. 718-725.

60. Nolan K. F., Greaves D. R., Waldmann H. The human interleukin 18 gene IL18 maps to 11q22. 2-q22. 3, closely linked to the DRD2 gene locus and distinct from mapped IDDM loci //Genomics. – 1998. – Т. 51. – №. 1. – С. 161.

61. Novick D, Schwartsburd B, Pinkus R, Suissa D, Belzer I, et al. 2001. A novel IL-18BP ELISA shows elevated serum IL-18BP in sepsis and extensive decrease of free IL-18. Cytokine 14:334–42

62. Okamura H, Tsutsui H, Komatsu T, Yutsudo M, Hakura A, et al. 1995. Cloning of a new cytokine that induces interferon-γ. Nature 378:88–91

63. O'Neill L. A. J. The interleukin‐1 receptor/Toll‐like receptor superfamily: 10 years of progress //Immunological reviews. – 2008. – Т. 226. – №. 1. – С. 10-18.

64. Onoufriadis A. et al. Mutations in<i> IL36RN/IL1F5</i> Are Associated with the Severe Episodic Inflammatory Skin Disease Known as Generalized Pustular Psoriasis //The American Journal of Human Genetics. – 2011. – Т. 89. – №. 3. – С. 432-437.

65. Pan, G. et al. IL‑1H, an interleukin 1‑related protein that binds IL‑18 receptor/IL‑1Rrp. Cytokine 13, 1–7 (2001).

66. Pelegrin P., Barroso-Gutierrez C., Surprenant A. P2X7 receptor differentially couples to distinct release pathways for IL-1β in mouse macrophage //The Journal of Immunology. – 2008. – Т. 180. – №. 11. – С. 7147-7157.

67. Puren AJ, Fantuzzi G, Dinarello CA. 1999. Gene expression, synthesis and secretion of IL-1β and IL-18 are differentially regulated in human blood mononuclear cells and mouse spleen cells. Proc. Natl. Acad. Sci. USA 96:2256–61

68. Qu Y. et al. Nonclassical IL-1β secretion stimulated by P2X7 receptors is dependent on inflammasome activation and correlated with exosome release in murine macrophages //The Journal of Immunology. – 2007. – Т. 179. – №. 3. – С. 1913-1925.

69. Qu Y. et al. P2X7 receptor-stimulated secretion of MHC class II-containing exosomes requires the ASC/NLRP3 inflammasome but is independent of caspase-1 //The Journal of Immunology. – 2009. – Т. 182. – №. 8. – С. 5052-5062.

70. Ramadas R. A. et al. Interleukin-1 family member 9 stimulates chemokine production and neutrophil influx in mouse lungs //American Journal of Respiratory Cell and Molecular Biology. – 2011. – Т. 44. – №. 2. – С. 134.

71. Rothwell N. J., Luheshi G. N. Interleukin 1 in the brain: biology, pathology and therapeutic target //Trends in neurosciences. – 2000. – Т. 23. – №. 12. – С. 618-625.

72. Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie AN, Lee RT. 2007. IL-33 and ST2 comprisea critical biomechanically induced and cardioprotective signaling system. J. Clin. Invest. 117:1538–49

73. Santarlasci V. et al. IL-1 and T helper immune responses //Frontiers in immunology. – 2013. – Т. 4.

74. Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, et al. 2005. IL-33, an interleukin-1-like cytokinethat signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines.Immunity 23:479–90

75. Schmitz M. L. et al. Signal integration, crosstalk mechanisms and networks in the function of inflammatory cytokines //BiochimicaetBiophysicaActa (BBA)-Molecular Cell Research. – 2011. – Т. 1813. – №. 12. – С. 2165-2175.

76. Schreuder H. A. et al. Refined Crystal Structure of the Interleukin‐1 Receptor Antagonist //European Journal of Biochemistry. – 1995. – Т. 227. – №. 3. – С. 838-847.

77. Schroder K., Tschopp J. The inflammasomes //Cell. – 2010. – Т. 140. – №. 6. – С. 821-832.

78. Sharma, S. et al. The IL‑1 family member 7b translocates to the nucleus and downregulates proinflammatory cytokines. J. Immunol. 180, 5477–5482 (2008).

79. Shirasaki Y. et al. Real-time single-cell imaging of protein secretion //Scientific reports. – 2014. – Т. 4.

80. Smith D. E. et al. Four new members expand the interleukin-1 superfamily //Journal of Biological Chemistry. – 2000. – Т. 275. – №. 2. – С. 1169-1175.

81. Steringer J. P., Müller H. M., Nickel W. Unconventional secretion of fibroblast growth factor 2—a novel type of protein translocation across membranes? //Journal of molecular biology. – 2015. – Т. 427. – №. 6. – С. 1202-1210.

82. Takazawa Y. et al. Notch downregulation in regenerating epidermis contributes to increased IL-36 expression //Journal of Dermatological Science. – 2013. – Т. 69. – №. 2. – С. e60-e61.

83. Thomas C., Bazan J. F., Garcia K. C. Structure of the activating IL-1 receptor signaling complex //Nature structural & molecular biology. – 2012. – Т. 19. – №. 4. – С. 455-457.

84. Tortola L. et al. Psoriasiform dermatitis is driven by IL-36–mediated DC-keratinocyte crosstalk //The Journal of clinical investigation. – 2012. – Т. 122. – №. 11. – С. 3965.

85. Towne J. E. et al. Interleukin (IL)-1F6, IL-1F8, and IL-1F9 signal through IL-1Rrp2 and IL-1RAcP to activate the pathway leading to NF-κB and MAPKs //Journal of Biological Chemistry. – 2004. – Т. 279. – №. 14. – С. 13677-13688.

86. Towne J. E. et al. Interleukin-36 (IL-36) ligands require processing for full agonist (IL-36α, IL-36β, and IL-36γ) or antagonist (IL-36Ra) activity //Journal of Biological Chemistry. – 2011. – Т. 286. – №. 49. – С. 42594-42602.

87. van de Veerdonk F. L. et al. IL-38 binds to the IL-36 receptor and has biological effects on immune cells similar to IL-36 receptor antagonist //Proceedings of the National Academy of Sciences. – 2012. – Т. 109. – №. 8. – С. 3001-3005.

88. Verhoef P. A. et al. Maitotoxin induces biphasic interleukin-1β secretion and membrane blebbing in murine macrophages //Molecular pharmacology. – 2004. – Т. 66. – №. 4. – С. 909-920.

89. Vigers G. P. A. et al. Crystal structure of the type-I interleukin-1 receptor complexed with interleukin-1β. – 1997.

90. Vigne S. et al. IL-36 signaling amplifies Th1 responses by enhancing proliferation and Th1 polarization of naive CD4+ T cells //Blood. – 2012. – Т. 120. – №. 17. – С. 3478-3487.

91. Vigne S. et al. IL-36R ligands are potent regulators of dendritic and T cells //Blood. – 2011. – Т. 118. – №. 22. – С. 5813-5823.

92. Wang D. et al. Structural insights into the assembly and activation of IL-1 [beta] with its receptors //Nature immunology. – 2010. – Т. 11. – №. 10. – С. 905-911.

93. Webb A. C. et al. Interleukin-1 gene (IL1) assigned to long arm of human chromosome 2 //Lymphokine research. – 1985. – Т. 5. – №. 2. – С. 77-85.

94. Werman A,Werman-Venkert R, White R, Lee JK,Werman B, et al. 2004. The precursor form of IL-1α is an intracrine proinflammatory activator of transcription. Proc. Natl. Acad. Sci. USA 101:2434–39

95. Wilson KC, Cruikshank WW, Center DM, Zhang Y. 2002. Prointerleukin-16 contains a functional CcN motif that regulates nuclear localization. Biochemistry 41:14306–12

96. Xiang Y, Moss B. 2001. Correspondence of the functional epitopes of poxvirus and human interleukin-18-binding proteins. J. Virol. 75:9947–54

97. Yang H,Wang H, Tracey KJ. 2001. HMG-1 rediscovered as a cytokine. Shock 15:247–53

98. Yeretssian G., Labbé K., Saleh M. Molecular regulation of inflammation and cell death //Cytokine. – 2008. – Т. 43. – №. 3. – С. 380-390.

99. Yoshimoto T. et al. IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells, and B cells: synergism with IL-18 for IFN-γ production //The Journal of Immunology. – 1998. – Т. 161. – №. 7. – С. 3400-3407.

100. Zorrilla EP, Sanchez-Alavez M, Sugama S, Brennan M, Fernandez R, et al. 2007. Interleukin-18 controls energy homeostasis by suppressing appetite and feed efficiency. Proc. Natl. Acad. Sci. USA 104:11097–102

Наши рекомендации