Немембранные органеллы клетки
К немембранным органеллам клетки относятся центриоли, микротрубочки, филаменты, рибосомы и полисомы.
Центриоли (centrioli), обычно их две (диплосома), представляют собой мелкие тельца, окруженные плотным участком цитоплазмы. От каждой центриоли лучеобразно отходят микротрубочки, получившие название центросферы. Диплосома (две центриоли) и центросфера образуют клеточный центр, который располагается или возле ядра клетки, или возле поверхности комплекса Гольджи. Центриоли в диплосоме расположены под углом друг к другу. Каждая центриоль представляет собой цилиндр, стенка которого состоит из микротрубочек длиной около 0,5 мкм и диаметром около 0,25 мкм. Центриоли являются полуавтономными самообновляющимися структурами, которые удваиваются при делении клетки. Вначале центриоли расходятся в стороны, и возле каждой из них образуется дочерняя центриоль. Таким образом, перед делением в клетке имеются две попарно соединенные центриоли две диплосомы. Центриоли принимают участие в формировании цитоплазматических микротрубочек во время деления клетки и в регуляции образования митотического веретена. В клетках высших растений и большинства грибов центриолей нет, и митотическое веретено образуется там иным способом. Кроме того, ученые полагают, что ферменты клеточного центра принимают участие в процессе перемещения дочерних хромосом к разным полюсам в анафазе митоза.
Микротрубочки (microtubuli) представляют собой различной длины полые цилиндры диаметром 20-30 нм. Многие микротрубочки входят в состав центросферы, где они имеют радиальное направление. Другие микротрубочки расположены под цитолеммой, в апикальной части клетки. Здесь они вместе с пучками микрофиламентов образуют внутриклеточную трехмерную сеть. Стенки микротрубочек имеют толщину 6-8 нм. Микротрубочки образуют цитоскелет клетки и участвуют в транспорте веществ внутри нее. Микротрубочки имеют две основные функции - двигательную и структурную. Двигательная функция заключается в том, что по микротрубочкам с помощью специальных транспортных белков - транслокаторов - осуществляется движение клеточных органелл .
Структурная функция состоит в поддержании с помощью микротрубочек определенной формы клетки или ее части.
Цитоскелет клетки представляет собой трехмерную сеть, в которой различные белковые нити связаны между собой поперечными мостиками. В образовании цитоскелета, помимо микротрубочек, участвуют также актиновые, миозиновые и промежуточные филаменты, которые выполняют не только опорную, но и двигательную функцию клетки.
1. Служит клетке механическим каркасом, который придает клетке типическую форму и обеспечивает связь между мембраной и органеллами. Каркас представляет собой динамичную структуру, которая постоянно обновляется по мере изменения внешних условий и состояния клетки.
2. Действует как «мотор» для клеточного движения. Двигательные (сократительные) белки содержатся не только в мышечных клетках (см. с. 324), но и в других тканях. Компоненты цитоскелета определяют направление и координируют движение, деление, изменение формы клеток в процессе роста, перемещение органелл, движение цитоплазмы.
3. Служит в качестве «рельсов» для транспорта органелл и других крупных комплексов внутри клетки.
Рибосомы(ribosomae) имеются во всех клетках, они участвуют в образовании белковых молекул - в синтезе белка. Размер рибосомы 20х30 нм. Это сложные рибонуклеопротеиды, состоящие из белков и молекул РНК в соотношении 1: 1. Различают рибосомы одиночные - монорибосомы и собранные в группы - полирибосомы, или полисомы. Рибосомы располагаются свободно на поверхности мембран, в результате чего образуется зернистая (гранулярная) эндоплазматическая сеть. Рибосома отвечает в клетке трансляцию – процесс биосинтеза полипептидных цепей на матрице информационной РНК.
Включения (клеточные гранулы) образуются в результате жизнедеятельности клеток. Их появление зависит от характера обменных процессов в клетке. Различают трофические включения: жировые, белковые, которые мотуг накапливаться в гиалоплазме в качестве резервных материалов, необходимых для жизнедеятельности клетки. К этим же включениям относятся полисахариды, находящиеся в клетках в виде гликогена. Секреторные включения, содержащие биологически активные вещества, накапливаются в железистых клетках. Включения мотуг быть пигментными, попавшими в организм (в клетки) извне (красители, пьтевые частицы) или образовавшимися в самом организме в результате его жизнедеятельности (гемоглобин, меланин, липофусцин и др.).
Билет 10
Клеточное ядро
Ядро ограничено ядерной оболочкой, отделяющей его содержимое (кариоплазму) от цитоплазмы. Оболочка состоит из двух мембран, разделенных промежутком. Обе они пронизаны многочисленными порами, благодаря которым возможен обмен веществами между ядром и цитоплазмой. В ядре клетки у большинства эукариот находится от 1 до 7 ядрышек. С ними связаны процессы синтеза РНК и тРНК.
Основные компоненты ядра - хромосомы, образованные из молекулы ДНК и различных белков. В световом микроскопе они хорошо различимы лишь в период клеточного деления (митоза, мейоза). В неделящейся клетке хромосомы имеют вид длинных тонких нитей, распределенных по всему объему ядра.
Во время деления клеток хромосомные нити образуют плотные спирали, вследствие чего становятся видимыми (с помощью обычного микроскопа) в форме палочек, «шпилек». Весь объем генетической информации распределен между хромосомами ядра. В процессе их изучения были выявлены следующие закономерности:
· в ядрах соматических клеток (т. е. клеток тела, неполовых) у всех особей одного вида содержится одинаковое количество хромосом, составляющих набор хромосом (рис. 3);
· для каждого вида характерен свой хромосомный набор по их количеству (например, у человека 46 хромосом, у мушки дрозофилы — 8, у аскариды — 4, у речного рака — 196, у лошади — 66, у кукурузы — 104);
· хромосомы в ядрах соматических клеток могут быть сгруппированы парами, получившими названиегомологичных хромосом на основании их сходства (по строению и функциям);
· в ядрах половых клеток (гамет) из каждой пары гомологичных хромосом содержится только одна, т. е. общий набор хромосом вдвое меньше, чем в соматических клетках;
· одинарный набор хромосом в половых клетках называется гаплоидным и обозначается буквой n, а в соматических - диплоидным (2n).
Ядерная оболочка
Эта структура характерна для всех эукариотических клеток. Ядерная оболочка состоит из внешней и внутренней мембран, разделенных перинуклеарным пространством шириной от 20 до 60 нм. В состав ядерной оболочки входят ядерные поры. Наличие особых пор в оболочке ядра, которые образуются за счет многочисленных зон слияний двух ядерных мембран и представляет собой как бы округлые перфорации всей ядерной оболочки.
Ядерный матрикс
Этот комплекс не представляет собой какую-то чистую фракцию, сюда входят компоненты и ядерной оболочки, и ядрышка, и кариоплазмы. С ядерным матриксом оказались связаны как гетерогенная РНК, так и часть ДНК. Эти наблюдения дали основание считать, что матрикс ядра играет важную роль не только в поддержании общей структуры интерфазного ядра, но и может участвовать в регуляции синтеза нуклеиновых кислот.
Ядрышко
Практически во всех живых клетках эукариотических организмов в ядре видно одно или несколько обычно округлой формы тельц, сильно преломляющих свет, - это ядрышки, или нуклеолы.
Ядрышко - не самостоятельная структура или органоид. Оно - производное хромосомы, один из ее локусов, активно функционирующий в интерфазе.
В процессах синтеза клеточных белков ядрышко клетки является местом образования рибосомных РНК и рибосом, на которых происходит синтез полипептидных цепей.
Ядро осуществляет две группы общих функций: одну, связанную собственно с хранением генетической информации, другую - с ее реализацией, с обеспечением синтеза белка.
Билет 11
Хромосомы
Хромосомы
Первичная степень укладки молекул ДНК - хромосомная фибрилла. Наблюдения за структурой хроматина с помощью электронного микроскопа показали, что в составе ядра на ультратонких срезах всегда видны фибриллярные элементы. Впервые их обнаружил Х. Рис (1957), который и дал им название элементарных хромосомных фибрилл.
Морфология хромосом
Морфологию хромосом лучше всего изучать в момент их наибольшей конденсации, в метафазе и в начале анафазы. Хромосомы животных и растений в этом состоянии представляют собой палочковидные структуры разной длины с довольно постоянной толщиной, у большей части хромосом удается легко найти зону первичной перетяжки, которая делит хромосому на два плеча (рис). Хромосомы с равными или почти равными плечами называют метацентрическими, с плечами неодинаковой длины - субметацентрическими. Палочковидные хромосомы с очень коротким, почти незаметным вторым плечом - акроцентрические.
В области первичной перетяжки расположена центромера, или кинетохор. Это пластинчатая структура, имеющая форму диска. Она связана тонкими фибриллами с телом хромосомы в области перетяжки. От него отрастают пучки микротрубочки митотического веретена, идущие в направлении к центриолям. Они принимают участие в движении хромосом к полюсам клетки при митозе.
Обычно одна хромосома имеет только одну центромеру (моноцентрические хромосомы), но могут встречаться хромосомы дицентрические и полицентрические.
Некоторые хромосомы имеют вторичную перетяжку. Последняя обычно расположена вблизи дистального конца хромосомы и отделяет маленький участок, спутник. Вторичные перетяжки называют, кроме того, ядрышковыми организаторами, так как именно на этих участках хромосом в интерфазе происходит образование ядрышка. Здесь же локализована ДНК, ответственная за синтез рРНК.
Плечи хромосом оканчиваются теломерами, конечными участками. Теломерные концы хромосом не способны соединяться с другими хромосомами или их фрагментами, в отличие от концов хромосом, лишенных теломерных участков, которые могут присоединяться к таким же разорванным концам других хромосом.
Размеры хромосом у разных организмов варьируют в широких пределах. Так, длина хромосом может колебаться от 0,2 до 50 мкм. Самые мелкие хромосомы обнаруживаются у некоторых простейших, грибов. Наиболее длинные - у некоторых прямокрылых насекомых, у амфибий и у лилейных. Длина хромосом человека находится в пределах 1,5-10 мкм.
Число хромосом у различных объектов тоже значительно колеблется, но характерно для каждого вида. У некоторых радиолярий число хромосом достигает 1000-1600. Рекордсменом среди растений по числу хромосом (около 500) является папоротник ужовник, 308 хромосом у тутового дерева, у речного рака 196 хромосом. Наименьшее количество хромосом (2 на диплоидный набор) наблюдается у одной из рас аскариды, у сложноцветного Haplopappus gracilic - всего 4 хромосомы (2 пары).
Совокупность числа, величины, величины и морфологии хромосом называется кариотипом данного вида. Даже у близких видов хромосомные наборы отличаются друг от друга или по числу хромосом, или по величине хотя бы одной или нескольких хромосом. Следовательно, структура кариотипа может быть таксономическим признаком.
Кариотип – совокупность всех характеристик хромосом, таких как структура, расположение, последовательность, форма, количество и размер.
У каждого вида живых организмов существует свой кариотип, состав которого влияет на обеспечение нормальной жизнедеятельности.
Эухроматин, активный хроматин, участки хроматина (вещества хромосом), сохраняющие деспирализованное состояние элементарных дезоксирибонуклеопротеидных нитей (ДНП) в покоящемся ядре, т. е. винтерфазе
(в отличие от других участков — гетерохроматина). Э.отличается от гетерохроматина также способностью к интенсивному синтезу рибонуклеиновой кислоты (РНК) и большим содержанием негистоновых белков. Гетерохроматин — участки хроматина, находящиеся в течение клеточного цикла в конденсированном (компактном) состоянии. Особенностью гетерохроматиновой ДНК является крайне низкая транскрибируемость.Билет 12
Митотический цикл клетки
Митотический цикл — это совокупность процессов, происходящих в клетке от одного деления до следующего и заканчивающихся образованием двух клеток следующей генерации. Кроме этого, в понятие жизненного цикла входят также период выполнения клеткой своих функций и периоды покоя. В это время дальнейшая клеточная судьба неопределенна: клетка может начать делиться (вступает в митоз) либо начать готовиться к выполнению специфических функций.
Основные стадии митоза.
1.Редупликация (самоудвоение) генетической информации материнской клетки и равномерное распределение ее между дочерними клетками. Это сопровождается изменениями структуры и морфологии хромосом, в которых сосредоточено более 90% информации эукариотической клетки.
2.Митотический цикл состоит из четырех последовательных периодов: пресинтетического (или постмитотического) G1, синтетического S, постсинтетического (или премитотического) G2 и собственно митоза. Они составляют автокаталитическую интерфазу (подготовительный период).
Фазы клеточного цикла:
1) пресинтетическая (G1). Идет сразу после деления клетки. Синтеза ДНК еще не происходит. Клетка активно растет в размерах, запасает вещества, необходимые для деления: белки (гистоны, структурные белки, ферменты), РНК, молекулы АТФ. Происходит деление митохондрий и хлоропластов (т. е. структур, способных к ауторепродукции). Восстанавливаются черты организации интерфазной клетки после предшествующего деления;
2) синтетическая (S). Происходит удвоение генетического материала путем репликации ДНК. Она происходит полуконсервативным способом, когда двойная спираль молекулы ДНК расходится на две цепи и на каждой из них синтезируется комплементарная цепочка.
В итоге образуются две идентичные двойные спирали ДНК, каждая из которых состоит из одной новой и старой цепи ДНК. Количество наследственного материала удваивается. Кроме этого, продолжается синтез РНК и белков. Также репликации подвергается небольшая часть митохонд-риальной ДНК (основная же ее часть реплицируется в G2 период);
3) постсинтетическая (G2). ДНК уже не синтезируется, но происходит исправление недочетов, допущенных при синтезе ее в S период (репарация). Также накапливаются энергия и питательные вещества, продолжается синтез РНК и белков (преимущественно ядерных).
S и G2 непосредственно связаны с митозом, поэтому их иногда выделяют в отдельный период — препрофазу.
После этого наступает собственно митоз, который состоит из четырех фаз. Процесс деления включает в себя несколько последовательных фаз и представляет собой цикл. Его продолжительность различна и составляет у большинства клеток от 10 до 50 ч. При этом у клеток тела человека продолжительность самого митоза составляет 1—1,5 ч, G2-периода интерфазы — 2—3 ч, S-периода интерфазы — 6—10 ч.
Стадии митоза.
Процесс митоза принято подразделять на четыре основные фазы: профазу, метафазу, анафазуи телофазу(рис. 1–3). Так как он непрерывен, смена фаз осуществляется плавно — одна незаметно переходит в другую.
В профазе увеличивается объем ядра, и вследствие спирализации хроматина формируются хромосомы. К концу профазы видно, что каждая хромосома состоит из двух хроматид. Постепенно растворяются ядрышки и ядерная оболочка, и хромосомы оказываются беспорядочно расположенными в цитоплазме клетки. Центриоли расходятся к полюсам клетки. Формируется ахроматиновое веретено деления, часть нитей которого идет от полюса к полюсу, а часть — прикрепляется к центромерам хромосом. Содержание генетического материала в клетке остается неизменным (2n2хр).
В метафазе хромосомы достигают максимальной спирализации и располагаются упорядоченно на экваторе клетки, поэтому их подсчет и изучение проводят в этот период. Содержание генетического материала не изменяется (2n2хр).
В анафазе каждая хромосома «расщепляется» на две хроматиды, которые с этого момента называются дочерними хромосомами. Нити веретена, прикрепленные к центромерам, сокращаются и тянут хроматиды (дочерние хромосомы) к противоположным полюсам клетки. Содержание генетического материала в клетке у каждого полюса представлено диплоидным набором хромосом, но каждая хромосома содержит одну хроматиду (2nlxp).
В телофазе расположившиеся у полюсов хромосомы деспирализуются и становятся плохо видимыми. Вокруг хромосом у каждого полюса из мембранных структур цитоплазмы формируется ядерная оболочка, в ядрах образуются ядрышки. Разрушается веретено деления. Одновременно идет деление цитоплазмы. Дочерние клетки имеют диплоидный набор хромосом, каждая из которых состоит из одной хроматиды (2n1хр).