Элементы геометрического расчета
У косозубых колес зубья располагаются не по образующей делительного диаметра, а составляют с ней некоторый угол b (рис 7.1). Для нарезания косых зубьев используют инструмент такого же профиля, как и для нарезания прямых. Наклон зуба образуют соответствующим поворотом инструмента относительно заготовки на угол b. Поэтому профиль косого зуба в нормальном сечении “n-n” (рис 7.2) совпадает с профилем прямого зуба. Модуль в этом сечении также должен быть стандартным. Параметры зуба в нормальном сечении и торцевой плоскости “t-t” будут различными и мы должны уметь рассчитывать эти параметры.
В торцевом сечении “t-t” или в окружном направлении параметры косого зуба изменяются в зависимости от угла b :
окружной шаг ;
окружной модуль ;
диаметр делительной окружности
;
делительное межосевое расстояние
Таким образом, изменяя b, можно вписать передачу в заданное межосевое расстояние.
В отличие от прямых зубьев косые входят в зацепление не сразу по всей длине, а постепенно. Зацепление здесь распространяется в направлении от точек 1 к точкам 2 (рис. 7.1). В рассматриваемый момент времени в зацеплении находятся три пары зубьев 1, 2 и 3. При этом пара 2 зацепляется по всей длине зубьев, а пары 1 и 3 только частично. В следующий момент времени пара 1 вышла из зацепления и находится в положении 1’. Однако в зацеплении еще остались две пары 2 и 3 (рис. 7.3).
Следовательно, в отличие от прямозубого косозубое зацепление не имеет зоны однопарного зацепления. В прямозубом зацеплении нагрузка с двух зубьев на один или с одного на два передается мгновенно. Это явление сопровождается ударами и шумом. В косозубых передачах зубья нагружаются постепенно по мере захода их в поле зацепления, а в зацеплении находятся минимум две пары зубьев. Отмеченное преимущество косозубого зацепления становится особенно значительным в быстроходных передачах, т.к. динамические нагрузки возрастают пропорционально квадрату скорости.
Введем понятие коэффициента осевого перекрытия
.
Здесь - осевой шаг, где bb – угол наклона зуба на диаметре основной окружности (рис. 7.4).
Косозубые колеса могут работать при значениях коэффициента ea<1, если eb>1.
Усилия в зацеплении
Усилие нормально поверхности зуба, т.е. действует по линии зацепления (в плоскости зацепления) и должно преодолевать момент сопротивления на колесе Т2 (рис. 7.5).
Рассмотрим зубчатое колесо в плане. Сделаем сечение плоскостью n-n нормально поверхности зуба. В плоскости n-n действует полное усилие Fn, которое дает на фронтальной плоскости, проекцию Ft'. Сила Ft' раскладывается в системе координат xoy на составляющие – окружное усилие Ft и осевое усилие Fa.
Повернем плоскость n-n на 90° в сторону чертежа. Здесь усилие Fn раскладывается на F't и Fr – радиальное усилие.
В системе координат xyz ( рис.7.6) разложение силы Fn принимает вид параллелепипеда. Сила Fn является диагональю параллелепипеда. Исходной всегда является сила Ft.
Усилия для косозубого зацепления можно записать в следующем виде:
С увеличением b растет осевое усилие Fa, что является недостатком, т.к. дополнительно нагружаются опоры валов. С целью его уменьшения ограничиваются углы b = 8¸20°. Это не нужно делать на шевронных колесах.
Шеврон – это колесо с двумя зубчатыми венцами, на которых направление зубьев противоположно (рис.7.7). Осевые усилия здесь уравновешиваются на самом колесе. Для шевронных колёс значения угла наклона зубьев могут быть b = 30¸45°.
Понятие об эквивалентных колесах и определение их размеров
В косозубом цилиндрическом колесе прочность зуба определяется его формой и размерами в нормальном сечении. Форма зуба в нормальном сечении n-n (рис. 7.8) соответствует форме зуба условного прямозубого колеса с модулем mn и диаметром dv=2rv, где rv – радиус кривизны эллипса в точке Р.
Размеры полуосей эллипса определяются в виде и .
Известно, что для эллипса , тогда диаметр эквивалентного колеса
.
С другой стороны диаметр эквивалентного колеса можно выразить как
где ; - эквивалентное число зубьев.
Так как , то , откуда .
Если принять ширину колеса , то такое колесо будет равнопрочным косозубому и называется эквивалентным колесом.