Раздел 1. ТЕХНИЧЕСКИЕ СРЕДСТВА АВТОМАТИЗАЦИИ

ГЛАВА 1. СРЕДСТВА ИЗМЕРЕНИЙ И ИХ ХАРАКТЕРИСТИКИ

1.1. Основные элементы средств измерений

Измерение, т. е. нахождение значения физической величины опытным путем, осуществляется с помощью специальных устройств – средств измерений. Основными видами средств измерений являются измерительные преобразователи и измерительные приборы.

Измерительные преобразователи (датчики) предназначены для получения сигнала измерительной информации, удобной для передачи, обработки и хранения, но не поддающейся непосредственному восприятию наблюдателем.

Измерительные приборы предназначены для получения сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем.

1.2. Погрешности средств измерений

Средства измерений могут быть с успехом использованы лишь только тогда, когда известны их метрологические свойства. Основным метрологическим свойством является погрешность.

Разность между показаниями прибора и истинным значением измеряемой величины называется абсолютной погрешностью.

Отношение абсолютной погрешности измерительного прибора к истинному значению измеряемой им величины – называется относительной погрешностью.

Основной погрешностью называется погрешность средств измерений, используемых в нормальных условиях, определяемых ГОСТами или другими техническими условиями на средства измерений.

Дополнительной погрешностью называется погрешность средства измерений, вызываемая воздействием на него условий при отклонении их действительных значений от нормальных.

Класс точности средств измерений, являющийся их обобщенной метрологической характеристикой, определяется пределами допускаемых основной и дополнительной погрешностей. Конкретные классы точности устанавливаются в стандартах на отдельные виды средств измерений. Чем меньше число, обозначающее класс точности, тем меньше пределы допускаемых погрешностей.

Статической характеристикой средства измерений называется функциональная зависимость между выходной и входной величинами в установившихся режимах работы, т. е.

х вых= f (хвх).

Динамической характеристикой средства измерений и их элементов называется функциональная зависимость между их выходной и входной величинами в динамических условиях преобразования, т. е. в переходных режимах, когда статические зависимости нарушаются в силу присущих всем средствам измерений инерционных свойств разного рода и вида (инерция движущихся масс, частей, теплопроводность и т. п.).

ГЛАВА 2. ГОСУДАРСТВЕННАЯ СИСТЕМА ПРОМЫШЛЕННЫХ ПРИБОРОВ И СРЕДСТВ АВТОМАТИЗАЦИИ (ГСП)

Государственная система промышленных приборов используется в целях наиболее экономически целесообразного решения проблемы обеспечения техническими средствами автоматических систем контроля, регулирования и управления

технологическими процессами для разных отраслей народного хозяйства, в том числе нефтегазодобывающей промышленности. По роду энергии используемой для питания устройств и

форм сигнала ГСП подразделяются: 1. Электрические

2. Пневматические 3. Гидравлические

4. Работающие без источников вспомогательной энергии. Унификация сигналов измерительной информации

(определяемая соответствующими стандартами) обеспечивает передачу и обмен информацией, дистанционную связь между устройствами управления, передачу результатов измерений от средств получения информации к устройствам контроля и управления, а также управляющих сигналов к исполнительным механизмам в автоматических системах любой сложности.

Из электрических сигналов наибольшее распространение получили унифицированные сигналы постоянного тока и напряжения (0–5 мА; 0–20 мА, 0–10 мВ; –10...0...+10 В и др.). Пневматические сигналы связи (0,02–0,1 МПа) нашли достаточ-но широкое применение в тех производствах, где отсутствуют повышенные требования к инерционности автоматизируемых процессов и где необходимо учитывать пожаро- и взрывоопасность производств. Гидравлические сигналы характеризуются давлением рабочей жидкости 0,2–0,8 МПа.

К первой группе приборов и устройств ГСП относятся первичные измерительные преобразователи (датчики), измерительные приборы и устройства, которые вместе с нормирующими устройствами, формирующими унифицированный сигнал, образуют группу устройств получения измерительной информации. В связи с большим разнообразием контролируемых и измеряемых параметров, а также огромным количеством конструктивных исполнений измерительных устройств номенклатура средств этой группы является самой многочисленной.

Во вторую группу входят различные преобразователи сигналов и кодов, коммутаторы измерительных цепей, шифраторы и дешифраторы, согласовательные устройства, а

также устройства дистанционной передачи, телеизмерения, телесигнализации и телеуправления.

В третью группу устройств, называемую центральной частью ГСП, входят технические средства, предназначенные для формальной и содержательной обработки измерительной информации и формирования управляющих воздействий: анализаторы сигналов, функциональные и операционные преобразователи, логические устройства, запоминающие устройства, автоматические регуляторы, датчики всех типов, а также управляющие вычислительные машины и устройства, в том числе микропроцессоры, микро- и миниЭВМ и др. В функциональном отношении эта группа устройств является самой сложной, поскольку они реализуют все алгоритмы автоматического регулирования и управления: от простейших задач стабилизации до автоматизации управления предприятиями или даже целыми отраслями.

Устройства четвертой группы (исполнительные устройства) – это электрические, пневматические, гидравлические или комбинированные исполнительные механизмы, усилители мощности, позиционеры и некоторые вспомогательные устройства к ним, а также различные регулирующие органы, которые могут в ряде случаев являться составной частью основного технологического оборудования.

Дальнейшим развитием системы ГСП являются агрегатные комплексы (АК), создаваемые на основе технических средств, входящих в отдельные функциональные группы ГСП, и предназначенные для самостоятельного применения в соответствии с их спецификой.

ГЛАВА 3. ТЕХНИЧЕСКИЕ СРЕДСТВА ДЛЯ ИЗМЕРЕНИЯ ПАРАМЕТРОВ

3.1. Измерительные преобразователи и приборы для измерения параметров состояния сред

Измерительные преобразователи и приборы этой группы предназначены для получения измерительной информации о таких физических величинах, как температура, давление,

расход, уровень и др., которые характеризуют состояние разных технологических сред (твердых, жидких, газообразных), а, также машин и агрегатов и их отдельных элементов, деталей и узлов.

Измерение указанных параметров и представление информации об их значениях и изменениях являются абсолютно необходимыми на всех стадиях протекания любых технологических процессов. Ни один технологический процесс не может управляться ни вручную, ни автоматически без получения такой информации с помощью соответствующих технических средств измерений, основанных на использовании различных методов измерений и способов получения результатов измерений.

3.1.1. Измерение температуры

Температура является одним из важнейших параметров, характеризующих многие процессы технологии добычи нефти и газа. Для измерения температуры применяется большое количество средств измерения, называемых термометрами.

Раздел 1. ТЕХНИЧЕСКИЕ СРЕДСТВА АВТОМАТИЗАЦИИ - student2.ru Термометрырасширения. Действие термометров расширения основано на использовании зависимости удельного объема вещества от

температуры измеряемой среды, в которую оно помещено.

Жидкостныетермометры. Измерение температуры жидкостными

ермометр ми
Раздел 1. ТЕХНИЧЕСКИЕ СРЕДСТВА АВТОМАТИЗАЦИИ - student2.ru Рис.3.1.Стержневой расширениятоснованоана различии коэффициентов

объемного расширения материала оболочки термометра и жидкости, заключенной в ней. Оболочка термометров изготовляется из специальных термометрических сортов стекла с малым коэффициентом расширения. Пределы измерения стеклянных термометров от –200 до +750 °С.

Дилатометрическиетермометры. Принцип действия стержневого дилатометрического термометра (рис. 3.1) основан на использовании разности удлинений трубки 1 и стержня 2 при нагревании вследствие различия коэффициентов их линейного расширения. Движение стержня передается стрелке прибора с помощью механической передачи 3.

Раздел 1. ТЕХНИЧЕСКИЕ СРЕДСТВА АВТОМАТИЗАЦИИ - student2.ru Биметаллическиетермометры. Чувствительный элемент термометра (рис. 3.2) выполнен в виде спиральной или плоской пружины, состоящей из двух пластин из разных металлов, сваренных по всей

длине. Внутренняя пластина имеет больший коэффициент линейного расширения, чем внешняя, поэтому

пружина
Рис.3.2.Биметаллический при нагревании такая термометр

раскручивается, а стрелка перемещается. Дилатометрическими и биметаллическими термометрами измеряется температура в пределах от –150 до +700 °С (погрешность 1–2,5 %).

Манометрическиетермометры. Принцип действия этих термометров основан на использовании зависимости давления рабочего вещества при постоянном объеме от температуры. В зависимости от заполнителя (рабочего вещества) эти термометры подразделяются на газовые, жидкостные и конденсационные. Устройство всех типов манометрических термометров аналогично.

Прибор (рис. 3.3) состоит из термобаллона 1, капиллярной трубки защищенной металлическим рукавом 7, и манометрической части, заключенной в специальный корпус 5. Вся внутренняя система прибора заполняется рабочим веществом. При нагревании термобаллона увеличивается объем жидкости или повышается давление рабочего вещества внутри замкнутой термосистемы. Эти изменения воспринимаются манометрической трубкой 3, которая через передаточный механизм, состоящий из тяги 4 и сектора 2, воздействует через зубчатое колесо на стрелку прибора. Диапазон измерения

температуры с помощью манометрических термометров от – 120 до +600 °С. Раздел 1. ТЕХНИЧЕСКИЕ СРЕДСТВА АВТОМАТИЗАЦИИ - student2.ru

Термоэлектрическиетермометры. Данные измерительные устройства состоят из термоэлектрического преобразователя температуры (ТПТ – термопары), электроизмерительного прибора и соединительных проводов.

Рис. 3.3. Манометрический термометр

Раздел 1. ТЕХНИЧЕСКИЕ СРЕДСТВА АВТОМАТИЗАЦИИ - student2.ru

Рис. 3.4. Термопара
В основу измерения температуры термоэлектрическими преобразователями температуры (ТПТ) положен термоэлектрический эффект, который заключается в том, что в замкнутой цепи, состоящей из двух или нескольких разнородных проводников, возникает электрический ток, если места соединения (спая) нагреты до разной температуры. Цепь, состоящая из двух разнородных проводников, образующих ТПТ (рис. 3.4), состоит из

термоэлектродов А и В, места соединения которых – спаи – имеют разную температуру. При нагревании рабочего спая t возникает термоэлектродвижущая сила (термоЭДС), которая является функцией двух переменных величин: t и t0 –

температуры свободного спая. Чувствительные электроизмерительные приборы, работающие в комплекте с ТПТ, градуируются как правило при температуре свободного спая t0, равной 0 °С. Раздел 1. ТЕХНИЧЕСКИЕ СРЕДСТВА АВТОМАТИЗАЦИИ - student2.ru

Рис. 3.5. Защитная арматура термоэлектрического преобразователя температуры

Для защиты от механических повреждений и воздействия измеряемой среды электроды ТПТ помещают в специальную арматуру (рис. 3.5), которая представляет собой защитную гильзу 1 с головкой 2, служащей для присоединения термоэлектродов 3 и проводов, соединяющих их с электроизмерительным прибором. Электроды термоэлектрических преобразователей должны быть хорошо изолированы во избежание соприкосновения между собой и защитной арматурой. Это осуществляется с помощью бус или трубок 4 из специального фарфора.

Для измерения термоЭДС, развиваемой ТПТ, в термоэлектрических термометрах используются различные электроизмерительные приборы, предназначенные для измерения небольших значений напряжения постоянного тока. Наиболее часто и широко в настоящее время в качестве измерительных приборов в комплектах термоэлектрических термометров применяются милливольтметры и потенциометры.

Раздел 1. ТЕХНИЧЕСКИЕ СРЕДСТВА АВТОМАТИЗАЦИИ - student2.ru Милливольтметры. Принцип действия милливольтметров (рис. 3.6) основан на взаимодействии между проводником (рамкой), по которому протекает электрический ток, и магнитным полем постоянного магнита. Рамка 1, выполненная из нескольких сотен последовательных витков тонкой изолированной проволоки

(медной, алюминиевой), помещается в магнитное поле постоянного магнита 3. При этом рамка имеет возможность поворачиваться на некоторый угол, для чего она крепится с помощью специальных кернов и подпятников или подвешивается на растяжках или подвесах (на рисунке не

Для формирования
Рис.3.6.Милливольтметрдля показаны).

измерениятермоЭДС равномерного радиального магнитного потока служит цилиндрический сердечник 4. При прохождении тока по рамке возникают силы F1 и F2, направленные в разные стороны и стремящиеся повернуть рамку вокруг ее оси. Противодействующий момент создается спиральными пружинами 2 (нижняя не показана), которые также служат для подвода термоЭДС к рамке.

Потенциометры. В основу работы потенциометров положен нулевой метод измерения электродвижущей силы, развиваемой ТПТ. При этом измеряемая ЭДС уравновешивается (компенсируется) с помощью известного падения напряжения, а результирующий эффект доводится до нуля.

В принципиальной упрощенной схеме потенциометра для измерения термоЭДС (рис. 3.7) ток от вспомогательного источника контрольного напряжения Е проходит по цепи, в которую между точками В и С включено переменное сопротивление Rр (реохорд). Реохорд представляет собой калиброванную проволоку длиной L Разность потенциалов между точкой В и любой промежуточной точкой Д, где

Раздел 1. ТЕХНИЧЕСКИЕ СРЕДСТВА АВТОМАТИЗАЦИИ - student2.ru находится скользящий контакт – движок реохорда, будет пропорциональна сопротивлению RВД. Последовательно с ТПТ при помощи переключателя П включается чувствительный милливольтметр НП – нуль-прибор, который является индикатором наличия тока в цепи.

Термоэлектрический преобразователь

Рис.3.7.Принципиальнаясхема подключается таким потенциометрадляизмерения образом, что его ток на термоЭДС участке RВДидет в том же направлении, что и от вспо-

могательного источника тока. Для измерения термоЭДС движок реохорда перемещается до тех пор, пока стрелка нуль-прибора не перестанет отклоняться от нуля. Очевидно, в этот момент падение напряжения на сопротивлении RВД будет равно изме-ряемой термоЭДС.

Поскольку реохорд является калиброванным сопротивлением, т. е. каждый его участок одинаковой длины имеет одинаковое сопротивление. Таким образом, термоЭДС E(tto) определяется величиной падения напряжения на участке сопротивления реохорда RВС и не зависит от других сопротивлений. Реохорд RВД может быть снабжен шкалой, отградуированной в милливольтах или градусах температурной шкалы

Очень широко применяются автоматические электронные потенциометры, предназначенные для измерения температуры и других параметров, преобразованных в напряжение постоянного тока. Структурная схема электронного автоматического потенциометра приведена на рис. 3.8.

Измерение термоЭДС Ех от ТПТ производится путем сравнения ее с падением напряжения на калиброванном реохорде Rр.

Раздел 1. ТЕХНИЧЕСКИЕ СРЕДСТВА АВТОМАТИЗАЦИИ - student2.ru Компенсационная схема потенциометра состоит из реохорда Rр с ползунком К, электронного усилителя 1 с преобразователем, преобразующим постоянное напряжение Ехв переменное, реверсивного электродвигателя РД и источника питания Еа. Электродвигатель через редуктор 2 связан с ползунком К и реверсивного электродвигателя РД и источника питания Еа.

Рис. 3.8. Структурная схема электронного автоматического потенциометра

Электродвигатель через редуктор 2 связан с ползунком К и стрелкой показывающей части прибора 3.

Действие компенсационной схемы сводится к автоматическому перемещению ползунка К по реохорду в сторону уменьшения напряжения рассогласования, т. е. разности термоЭДС от ТПТ и падения напряжения на реохорде, подаваемой на электронный усилитель. Это перемещение, производимое с помощью реверсивного электродвигателя РД, происходит до тех пор, пока напряжение рассогласования не станет равным нулю. Таким образом, положение ползунка К на реохорде и связанной с ним стрелки прибора определяет величину термоЭДС и, следовательно, величину измеряемой температуры. Сопротивление R служит для настройки рабочего тока в компенсационной цепи.

Конструкция современных электронных автоматических по-тенциометров основана на блочно-модульном принципе построе-ния: прибор состоит из отдельных унифицированных блоков и уз-

лов, соединенных между собой проводами через штепсельные разъемы.

Термометрысопротивления. Термометр сопротивления представляет собой измерительное устройство, состоящее из термопреобразователя сопротивления (ТС), электроизмерительного прибора и соединительных проводов. Термометры сопротивления широко применяются во всех отраслях промышленности для измерения температуры в достаточно широком диапазоне (от –260 и до +1100 °С). Измерение температуры с помощью термопреобразователей сопротивления основано на использовании зависимости электрического сопротивления чувствительного элемента от температуры:

R = f(t).

Вид этой функции зависит от природы материала термопреобразователя сопротивления. В настоящее время выпускаются три большие группы стандартных термопреобразователей сопротивления: платиновые, медные и никелевые. Платиновые предназначены для измерения температуры от –260 до +1100 °С, медные – от –200 до +200 °С, никелевые – от –60 до +180 °С. Наружная арматура ТС так же, как и термоэлектрических преобразователей температуры, состоит из защитной гильзы, подвижного или неподвижного штуцера для крепления головки, в которой помещается контактная колодка с зажимами для проводов, соединяющих ТС с измерительным устройством термометра сопротивления.

Раздел 1. ТЕХНИЧЕСКИЕ СРЕДСТВА АВТОМАТИЗАЦИИ - student2.ru В качестве измерительных приборов, применяемых в комплекте с ТС, широко используются логометры и уравновешенные мосты. Принципиальная электрическая схема уравновешенного моста приведена на рис. 3.9. Она состоит из постоянных

Рис. 3.9. Принципиальная схема уравновешенного моста

резисторов R1 и R2, реохорда Rр, термопреобразователя сопротивления Rtи сопротивления соединительных проводов Rпр. В одну диагональ моста включен источник постоянного тока Е, в другую – нуль-прибор НП. При равновесии моста, которое достигается перемещением движка по реохорду Rp, сила тока в диагонали моста равна нулю, т. е. I0 = 0. В этот момент потенциалы в вершинах моста bud равны, ток от источника I разветвляется в вершине моста а на две ветви I1, и I2. Следовательно, падения напряжения на резисторах R1 и R2одинаковые.

Таким образом, при изменении Rt мост можно уравновесить изменением сопротивления реохорда Rp.

Структурная схема электронногоавтоматическогомоста аналогична схеме автоматического потенциометра.

Раздел 1. ТЕХНИЧЕСКИЕ СРЕДСТВА АВТОМАТИЗАЦИИ - student2.ru Логометры являются измерительными приборами, показания которых пропорциональны отношению двух электрических величин (обычно сил токов). Подвижная система логометра (рис. 3.10) состоит из двух жестко скрепленных между собой рамок, имеющих сопротивления R1и R2, расположенных под некоторым углом одна к другой и помещенных в переменный воздушный зазор между полюсными наконечниками постоянного магнита и

Раздел 1. ТЕХНИЧЕСКИЕ СРЕДСТВА АВТОМАТИЗАЦИИ - student2.ru Рис.3.10.Принципиальная сердечником. Магнитная индукция между магнитными наконечниками и сердечником неравномерная и имеет зазор

между полюсными наконечниками постоянного магнита и сердечником. Магнитная индукция между магнитными наконечниками и сердечником неравномерная и имеет

наибольшую величину в середине, а наименьшую – у краев на-конечников. Рамки закрепляют с помощью кернов и подпятников, на растяжках или подвесах, что обеспечивает возможность их поворота на некоторый угол. Ток к рамкам подводится по спиральным безмоментным пружинкам, а также через подвесы или растяжки. При изменении сопротивления Rtвследствие изменения температуры через одну из рамок потечет ток большей силы, равенство моментов нарушается и подвижная система поворачивается на угол, пропорциональный изменению температуры.

3.1.2. Измерение давления

Давление, как параметр, характеризующий состояние различных веществ, определяется отношением силы, равномерно распределенной по нормальной к ней поверхности, к площади этой поверхности. Под абсолютным давлением Рабс подразумевается полное давление, которое отсчитывается от абсолютного нуля:

Рабс= Ризб+ Ратм.

Абсолютное давление газа меньшее атмосферного называется вакуумом (или вакуумметрическим давлением), т. е.:

Рвак= Ратм– Рабс.

Средства измерений, предназначенные для получения измерительной информации обо всех видах давлений, называются манометрами, а манометры для измерения давления разреженного газа – вакуумметрами. Средства для измерения разности двух давлений называются дифференциальными манометрами, или дифманометрами.

Жидкостныеманометры. Приборы этой группы основаны на уравновешивании измеряемого давления или разности давлений давлением столба рабочей жидкости. Они отличаются простотой устройства и эксплуатации, а также высокой точностью измерения, широко применяются в качестве лабораторных и поверочных приборов. Диапазон измерения их невелик.

Раздел 1. ТЕХНИЧЕСКИЕ СРЕДСТВА АВТОМАТИЗАЦИИ - student2.ru Деформационныеманометры. Принцип действия деформационных манометров основан на использовании деформации чувствительных элементов (мембран, сильфонов, пружин) или развиваемой ими силы под действием измеряемого давления среды и преобразовании ее в пропорциональное перемещение или усилие. На рис. 3.11 приведена схема устройства мембранного де-формационного

дистанционной передачи
Рис.3.11.Мембранный дифманометра с индукционной деформационныйдифманометр дистанционной передачей сдатчикоминдукционной измерительной информации на расстояние. Давление измеряемой

среды подводится к прибору по импульсным трубкам. В плюсовой и минусовой камерах дифманометра (т. е. в камерах, к которым подводятся большее и меньшее давления) размещены две одинаковые мембранные коробки 1 и 2, образованные из сваренных между собой гофрированных мембран. Коробки укреплены в разделительной перегородке, которая зажата между крышками корпуса 5. Внутренние полости мембранных коробок заполнены жидкостью и сообщаются через отверстие. С центром верхней мембраны связан сердечник 3 индукционного преобразователя 4, преобразующего перемещение в электрический сигнал, подаваемый на измерительный прибор. При изменении перепада давлений мембранные коробки деформируются, подвижные

Раздел 1. ТЕХНИЧЕСКИЕ СРЕДСТВА АВТОМАТИЗАЦИИ - student2.ru центры коробок перемещаются и жидкость перетекает из одной коробки в другую.

Величина перемещения подвижного центра верхней коробки и соединенного с ним сердечника зависит от параметров коробки и разности давления снаружи и внутри

Рис. 3.12. Трубчато-пружинный манометр

коробки. Деформация мембран продолжается до тех пор, пока силы, вызванные перепадом давлений, не уравновесятся упругими силами мембранных коробок.

Подобные мембранные дифмано-метры (типа ДМ) изготовляются на перепады давлений от 1,6 до 630 кПа и рабочее давление среды до 25 МПа. Класс точности приборов 1 – 1,5.

В сильфонных манометрах в качестве чувствительных элементов используются сильфоны, представляющие собой тонкостенную металлическую трубку с поперечной гофрировкой. Некоторые типы сильфонов изготовляются с винтовой пружиной, вставляемой внутрь, что несколько расширяет диапазон их применения.

На рис. 3.12 приведена кинематическая схема общепромышленного манометра с одновитковой пружиной (трубка Бурдона). При изменении давления Рвх перемещение конца трубки 3 через тягу 5 передается к сектору 1, который вращается на оси 6. Угловое перемещение сектора с помощью зубчатого зацепления вызывает вращение зубчатого колеса (трубки) 2, на оси которого укреплена стрелка отсчетного устройства 4.

Раздел 1. ТЕХНИЧЕСКИЕ СРЕДСТВА АВТОМАТИЗАЦИИ - student2.ru Электрическиеманометры. Эти приборы основаны на использовании зависимостей электрических параметров преобразователей давления от измеряемого давления среды, и в последние годы получили широкое распространение. Действие электрических манометров сопротивления основано на зависимости

электрического сопротивления

электрического манометра
Рис.3.13.Измерительныйблок чувствительного элемента от измеряемого давления. Принцип действия комплекса

измерительных преобразователей типа «Сапфир» основан на тензорезистивном эффекте тензорезисторов, наносимых в виде монокристаллической пленки кремния на чувствительные элементы приборов – тензомодули.

Измерительный блок, показанный на рис. 3.13, представляет собой тензомодуль рычажно-мембранного типа 6, помещенный в замкнутую полость основания 8. Последняя заполнена полиметилси-локсановой жидкостью. Тензомодуль отделен от измеряемой среды металлическими гофрированными мембранами 1, соединенными между собой штоком 7, который связан с концом рычага тензомодуля. Под действием разности давлений происходит перемещение штока 7, которое вызывает прогиб измерительной мембраны 2 тензомодуля, что ведет к изменению сопротивления тензорезисторов 5, нанесенных на измерительную мембрану. Электрический сигнал через выводы 3 передается во встроенное электронное устройство 4, с которого он далее передается в линию связи.

3.1.3. Измерение расхода и массы веществ

Раздел 1. ТЕХНИЧЕСКИЕ СРЕДСТВА АВТОМАТИЗАЦИИ - student2.ru Расходомерыпеременногоперепададавления. Для измерения расхода (дебита) жидкостей, газов и паров, протекающих по трубопроводам, широко используются расходомеры переменного перепада давления. Перепад давления создается с помощью нормализованных сужающих устройств. Наиболее

распространенными из них являются диафрагмы. Диафрагма представляет собой тонкий диск, установленный так, что центр его лежит на оси трубы в трубопроводе (рис. 3.14). При протекании потока жидкости или газа в трубопроводе с диафрагмой

Раздел 1. ТЕХНИЧЕСКИЕ СРЕДСТВА АВТОМАТИЗАЦИИ - student2.ru Рис. 3.14. Схема измерения расхода сужение его начинается до жидкостейигазовспомощью диафрагмы. На некотором

расстоянии за ней под действием сил инерции поток сужается до минимального сечения, а далее постепенно расширяется до полного сечения трубопровода. Перед диафрагмой и после нее образуются зоны завихрения. Давление струи около стенки перед диафрагмой возрастает из-за подпора перед ней. За диафрагмой оно снижается до минимума, затем снова повышается, но не достигает прежнего значения, так как происходит потеря давления Рпот вследствие трения и завихрений. Таким образом, часть потенциальной энергии давления потока переходит в кинетическую. В результате этого средняя скорость потока в суженном сечении повышается, а статическое давление Р2 в этом сечении становится меньше статического давления перед сужающим устройством Р1. Разность этих давлений (перепад давления ∆Р = Р1 – Р2) служит мерой расхода протекающей через сужающее устройство жидкости, газа или пара. Подключение к сужающему устройству измерительного прибора – дифманометра осу-ществляется с помощью импульсных трубок 1, 2, подводящих давления Р1и Р2 к соответствующим полостям прибора.

Раздел 1. ТЕХНИЧЕСКИЕ СРЕДСТВА АВТОМАТИЗАЦИИ - student2.ru Расходомерыобтекания. Эти устройства основаны на зависимости перемещения тела, находящегося в потоке и воспринимающего динамическое давление струи, от расхода вещества. Наиболее широко применяемыми расходомерами обтекания являются расходомеры постоянного перепада давления – ротаметры. Последние применяются для измерения рас-ходов однородных потоков чистых и слабозагрязненных жидкостей и газов, протекающих по трубопроводам. Ротаметр (рис. 3.15) представляет собой длинную

коническую трубку 1, располагаемую вертикально, вдоль которой перемещается поплавок 2 под действием движущегося снизу вверх потока.

Поплавок перемещается до тех пор, пока площадь кольцевого отверстия между поплавком и внутренней поверхностью конусной трубки не достигнет такого размера, при котором перепад давления по обе стороны

Рис. 3.15. Ротаметр

поплавка не станет равным расчетному. При этом действующие на поплавок силы уравновешиваются, а поплавок устанавливается на высоте, соответствующей определенному значению расхода.

Раздел 1. ТЕХНИЧЕСКИЕ СРЕДСТВА АВТОМАТИЗАЦИИ - student2.ru Тахометрическиерасходомеры. Принцип действия этих устройств основан на использовании зависимости скорости движения тел – чувствительных элементов, помещенных в поток, от расхода вещества, протекающего через расходомеры. В турбинных тахометрических расходомерах чувствительными элементами являются вращающиеся под действием потока жидкости или газа турбины-крыльчатки, располагаемые горизонтально или вертикально. Камерные тахометрические расходомеры представляют собой один или несколько подвижных элементов, отмеривающих или отсекающих при своем движении определенные объемы

жидкости или газа.

Рис. 3.16. Измерительный
Электромагнитные(индукционные)расходомеры. Эти устройства предназначены для измерения расхода различных жидких сред, в том числе пульп с мелкодисперсными неферромагнитными частицами удельной электропроводностью не ниже 5·10-2См/м, протекающих в закрытых и полностью заполненных трубопроводах.

преобразователь Широко применяются в разных отраслях электромагнитного расходомера промышленности. Измерительный преобразователь расхода

электромагнитного расходомера (рис. 3.16) состоит из немагнитного участка трубопровода 3 с токосъемными электродами 4 и электромагнита 2 с обмоткой возбуждения 1, охватывающего трубопровод. При протекании электропроводных жидкостей по немагнитному участку трубопровода 3 через однородное магнитное поле, создаваемое электромагнитом 2, в жидкости, которую можно представить как движущийся проводник, возникает электродвижущая сила, снимаемая электродами 4. Эта ЭДС прямо пропорциональна

средней скорости потока. Эта ЭДС представляет собой сигнал, пропорциональный расходу, который поступает на измерительный блок (на рисунке не показан), где он преобразуется в стандартизированный вид и затем подается к измерительному или управляющему устройству.

3.1.4. Измерение уровня

Поплавковыеуровнемеры. Существует большое разнообразие типов и модификаций поплавковых уровнемеров и сигнализаторов, различающихся по конструкции, характеру измерения (непрерывное или дискретное), пределам измерения, условиям применения, системе дистанционной передачи и т. п. Принцип их действия основан на использовании перемещения поплавка на поверхности жидкости. Это перемещение механически или с помощью системы дистанционной передачи передается к измерительной части прибора.

В поплавковом уровнемере (рис. 3.17) изменение уровня жидкости определяется по положению поплавка 1. Движение поплавка передается с помощью троса или мерной ленты 2, перекинутой через ролики 3 и 4, на мерный шкив 6, на оси которого укреплена стрелка 5, показывающая по шкале уровень жидкости в резервуаре. Поплавок и трос уравновешиваются контргрузом 7 или пружиной.

Гидростатическиеуровнемеры. Принцип их действия основан на измерении давления столба жидкости или выталкивающей силы, действующей на тело, погруженное в жидкость. В промышленности находят широкое применение буйковые и пьезометрические (барботажные) гидростатические уровнемеры.

Раздел 1. ТЕХНИЧЕСКИЕ СРЕДСТВА АВТОМАТИЗАЦИИ - student2.ru Принцип действия буйковых уровнемеров основан на измерении выталкивающей силы, действующей на буек, который погружен в жидкость и удерживается в ней в заданном положении с помощью какой-либо внешней силы. В качестве этой силы используется упругая сила пружины

Рис. 3.17. Поплавковый уровнемер

или скручивающейся торсионной трубки.

Пьезометрические гидростатические уровнемеры представляют собой открытую с одного конца измерительную трубку, опускаемую в резервуар с жидкостью, уровень которой измеряется. Через эту трубку продувается воздух, который барботирует через жидкость в виде пузырьков. Давление воздуха в трубке Р является мерой уровня жидкости. При этом следует учитывать влияние плотности жидкости ρ, так как Р = ρgH.

Электрическиеуровнемеры. Изменение уровня в них с помощью чувствительного элемента датчика преобразуется в электрический сигнал, который измеряется каким-либо электроизмерительным прибором. При этом используются электрические свойства среды: электропроводность, диэлектрическая проницаемость и др.

Акустические(ультразвуковые)уровнемеры. Эти приборы основаны на свойстве звуковых колебаний отражаться от границы раздела сред с различным акустическим сопротивлением. К достоинствам ультразвуковых уровнемеров следует отнести нечувствительность их к изменению свойств измеряемой среды, большой температурный диапазон, высокую надежность.

Радиоизотопныеуровнемеры. В этих приборах используется зависимость интенсивности потока ионизирующего излучения, падающего на приемник (детектор) излучения, от положения уровня измеряемой среды.

3.2. Измерительные преобразователи и приборы для измерения состава и свойств сред

В ходе переработки исходных продуктов и сырья и превращения их в готовую продукцию происходит многократное изменение их физико-химических свойств и состава. Измерение параметров, характеризующих состав и свойства продуктов, позволяет судить о режиме этих процессов непосредственно, так как именно они характеризуют качество продукции. Поэтому контроль этих параметров является обязательным, а иногда и главным элементом многих систем управления технологическими процессами производств.

Средства измерений для получения измерительной ин

Наши рекомендации