Системы одновременных уравнений. Проблема идентификации. Метод максимального правдоподобия с ограниченной информацией (LIML). Нелинейные модели регрессии
Система одновременных уравнений — совокупность эконометрических уравнений (часто линейных), определяющих взаимозависимость экономических переменных. Важным отличительным признаком системы «одновременных» уравнений от прочих систем уравнений является наличие одних и тех же переменных в правых и левых частях разных уравнений системы (речь идет о так называемой структурной форме модели, см. ниже).
Эндогенными называются переменные, значения которых определяются в процессе функционирования изучаемой экономической системы. Их значения определяются «одновременно» исходя из значений некоторых экзогенных переменных, значения которых определяются вне модели, задаются извне. В системах одновременных уравнений эндогенные переменные зависят как от экзогенных переменных, так и от эндогенных.
Измерение тесноты связи между переменными, построение изолированных уравнений регрессии недостаточно для объяснения функционирования сложных экономических систем. Изменение одной переменной не может происходить при абсолютной неизменности других. Её изменение повлечет за собой изменения во всей системе взаимосвязанных признаков. Таким образом отдельно взятое уравнение регрессии не может характеризовать истинное влияние отдельных признаков на вариацию результирующей переменной. Поэтому в экономических исследованиях важное место заняла проблема описания структуры связей между системой переменных.
Проблема идентификации
Структурное уравнение называется идентифицируемым, если его коэффициенты можно выразить через коэффициенты приведённой формы. Если это можно сделать единственным способом, то говорят о точной индентифицируемости, если несколькими способами — о сверхидентифицируемости. В противном случае оно называется неидентифицируемым. Сверхидентифицируемость фактически означает, что на коэффициенты приведённой формы наложены некоторые ограничения (сверхидентифицирующие). В полной приведённой форме участвуют все экзогенные переменные и на коэффициенты не налагается никаких ограничений.
Необходимое условие идентифицируемости структурного уравнения (порядковое условие): количество переменных правой части уравнения должно быть не больше количества всех экзогенных переменных системы. В канонической форме (когда "левой" и "правой" частей нет) данное условие иногда формулируют следующим образом: количество исключенных из данного уравнения экзогенных переменных должно быть не меньше количества включенных эндогенных переменных уравнения минус единица. Если данное условие не выполнено, то уравнение неидентифицируемо. Если выполнено со знаком равенства, то, вероятно, точно идентифицируемо, иначе - сверхидентифицируема.
Достаточное условие идентифицируемости структурного уравнения: ранг матрицы, составленной из коэффициентов (в других уравнениях) при переменных, отсутствующих в данном уравнении, не меньше общего числа эндогенных переменных системы минус единица.
Метод максимального правдоподобия с ограниченной информацией (LIML, метод наименьшего дисперсионного отношения) предназначен для оценки одного уравнения системы. Остальные уравнения оцениваются лишь в той мере, в какой это необходимо для оценки данного уравнения. Первое оценивается в структурной форме, остальные в неограниченной приведённой, то есть используется не вся доступная информация при оценке. Данный метод сводится к нахождению минимального собственного числа определенной симметрической матрицы.