Плоскопараллельное движение твердого тела. Определение скоростей и ускорений
1 Разложение плоскопараллельного движение на поступательное и вращательное движения |
2 Определение скоростей точек твердого тела при плоскопараллельном движении |
3 Мгновенный центр скоростей. Методы его нахождения |
4 Определение ускорений точек тела при плоскопараллельном движении |
В данной лекции рассматриваются следующие вопросы:
1. Плоскопараллельное движение твердого тела.
2. Уравнения плоскопараллельного движения.
3. Разложение движения на поступательное и вращательное.
4. Определение скоростей точек плоской фигуры.
5. Теорема о проекциях скоростей двух точек тела.
6. Определение скоростей точек плоской фигуры с помощью мгновенного центра скоростей.
7. Решение задач на определение скорости.
8. План скоростей.
9. Определение ускорений точек плоской фигуры.
10. Решение задач на ускорения.
11. Мгновенный центр ускорений.
Плоскопараллельное движение твердого тела. Уравнения плоскопараллельного движения.
Разложение движения на поступательное и вращательное
Плоскопараллельным (или плоским) называется такое движение твердого тела, при, котором все его точки перемещаются параллельно некоторой фиксированной плоскости П (рис. 28). Плоское движение совершают многие части механизмов и машин, например катящееся колесо на прямолинейном участке пути, шатун в кривошипно-ползунном механизме и др. Частным случаем плоскопараллельного движения является вращательное движение твердого тела вокруг неподвижной оси.
Рис.28 Рис.29
Рассмотрим сечение S тела какой-нибудь плоскости Оxy, параллельной плоскости П (рис.29). При плоскопараллельном движении все точки тела, лежащие на прямой ММ’, перпендикулярной течению S, т. е. плоскости П, движутся тождественно.
Отсюда заключаем, что для изучения движения всего тела достаточно изучить, как движется в плоскости Оху сечение S этого тела или некоторая плоская фигура S. Поэтому в дальнейшем вместо плоского движения тела будем рассматривать движение плоской фигуры S в ее плоскости, т.е. в плоскости Оху.
Положение фигуры S в плоскости Оху определяется положением какого-нибудь проведенного на этой фигуре отрезка АВ (рис. 28). В свою очередь положение отрезка АВ можно определить, зная координаты и точки А и угол , который отрезок АВ образует с осью х. Точку А, выбранную для определения положения фигуры S, будем в дальнейшем называть полюсом.
При движении фигуры величины и и будут изменяться. Чтобы знать закон движения, т. е. положение фигуры в плоскости Оху в любой момент времени, надо знать зависимости
.
Уравнения, определяющие закон происходящего движения, называются уравнениями движения плоской фигуры в ее плоскости. Они же являются уравнениями плоскопараллельного движения твердого тела.
Первые два из уравнений движения определяют то движение, которое фигура совершала бы при =const; это, очевидно, будет поступательное движение, при котором все точки фигуры движутся так же, как полюс А. Третье уравнение определяет движение, которое фигура совершала бы при и , т.е. когда полюс А неподвижен; это будет вращение фигуры вокруг полюса А. Отсюда можно заключить, что в общем случае движение плоской фигуры в ее плоскости может рассматриваться как слагающееся из поступательного движения, при котором все точки фигуры движутся так же, как полюс А, и из вращательного движения вокруг этого полюса.
Основными кинематическими характеристиками рассматриваемого движения являются скорость и ускорение поступательного движения, равные скорости и ускорению полюса , , а также угловая скорость и угловое ускорение вращательного движения вокруг полюса.