Мультипроцессорные вычислительные системы
В настоящее время тенденция в развитии микропроцессоров и систем, построенных на их основе, направлена на все большее повышение их производительности. Вычислительные возможности любой системы достигают своей наивысшей производительности благодаря двум факторам: использованию высокоскоростных элементов и параллельному выполнению большого числа операций.
Существует несколько вариантов классификации систем параллельной обработки данных. Самой ранней и наиболее известной является классификация архитектур вычислительных систем, предложенная в 1966 году М. Флинном. Классификация базируется на понятии потока, под которым понимается последовательность элементов, команд или данных, обрабатываемая процессором. На основе числа потоков команд и потоков данных выделяются четыре класса архитектур:
SISD, MISD, SIMD, MIMD.
SISD (sINgle INsTRuction sTReam / sINgle data sTReam) - одиночный поток команд и одиночный поток данных. К этому классу относятся прежде всего классические последовательные машины, или, иначе, машины фон-неймановского типа. В таких машинах есть только один поток команд, все команды обрабатываются последовательно друг за другом и каждая команда инициирует одну операцию с одним потоком данных. Не имеет значения тот факт, что для увеличения скорости обработки команд и скорости выполнения арифметических операций процессор может использовать конвейерную обработку. В таком понимании машины данного класса фактически не относятся к параллельным системам.
SIMD (sINgle INsTRuction sTReam / multIPle data sTReam) - одиночный поток команд и множественный поток данных. Применительно к одному микропроцессору этот подход реализован в MMX- и SSE- расширениях современных микропроцессоров. Микропроцессорные системы типа SIMD состоят из большого числа идентичных процессорных элементов, имеющих собственную память. Все процессорные элементы в такой машине выполняют одну и ту же программу. Это позволяет выполнять одну арифметическую операцию сразу над многими данными - элементамивектора. Очевидно, что такая система, составленная из большого числа процессоров, может обеспечить существенное повышение производительности только на тех задачах, при решении которых все процессоры могут делать одну и ту же работу.
MISD (multIPe INsTRuction sTReam / sINgle data sTReam) - множественный поток команд и одиночный поток данных. Определение подразумевает наличие в архитектуре многих процессоров, обрабатывающих один и тот же поток данных. Ряд исследователей к данному классу относят конвейерные машины.
MIMD (multIPe INsTRuction sTReam / multIPle data sTReam) - множественный поток команд и множественный поток данных. Базовой моделью вычислений в этом случае является совокупность независимых процессов, эпизодически обращающихся к разделяемым данным. В такой системе каждый процессорный элемент выполняет свою программу достаточно независимо от других процессорных элементов. Архитектура MIMD дает большую гибкость: при наличии адекватной поддержки со стороны аппаратных средств и программного обеспечения MIMD может работать как однопользовательская система, обеспечивая высокопроизводительную обработку данных для одной прикладной задачи, как многопрограммная машина, выполняющая множество задач параллельно, и как некоторая комбинация этих возможностей. К тому же архитектура MIMD может использовать все преимущества современной микропроцессорной технологии на основе строгого учета соотношения стоимость/производительность. В действительности практически все современные многопроцессорные системы строятся на тех же микропроцессорах, которые можно найти в персональных компьютерах, рабочих станциях и небольших однопроцессорных серверах.
Как и любая другая, приведенная выше классификация несовершенна: существуют машины, прямо в нее не попадающие, имеются также важные признаки, которые в этой классификации не учтены. Рассмотрим классификацию многопроцессорных и многомашинных систем на основе другого признака - степени разделения вычислительных ресурсов системы.
В этом случае выделяют следующие 4 класса систем:
системы с симметричной мультипроцессорной обработкой (symmeTRic multIProcessINg), или SMP-системы;
системы, построенные по технологии неоднородного доступа к памяти (non-un IForm memory access), или NUMA-системы;
кластеры;
системы вычислений с массовым параллелизмом (massively parallel processor), или MPP-системы.
Самым высоким уровнем интеграции ресурсов обладает система с симметричной мультипроцессорной обработкой, или SMP-система (рис. 1).
В этой архитектуре все процессоры имеют равноправный доступ ко всему пространству оперативной памяти и ввода/вывода. Поэтому SMP-архитектура называется симметричной. Ее интерфейсы доступа к пространству ввода/вывода и ОП, система управления кэш-памятью, системное ПО и т. п. построены таким образом, чтобы обеспечить согласованный доступ к разделяемым ресурсам. Соответствующие механизмы блокировки заложены и в шинном интерфейсе, и в компонентах операционной системы, и при построении кэша.