Функциональная и структурная организация процессора

Процессор - основная часть компьютера, осуществляющая управление (эти возможности реализуются при помощи логических операций) и обработку данных. Переход от первых процессоров, имевших простую архитектуру и работавших на частотах 2,5 - 4 МГц к современным процессорам, выполненным на СБИС, включающих в себя десятки миллионов транзисторов (, работающих на частотах 200 - 500 МГц, сопровождается переходом к более совершенным и мощным компьютерам. Процессор предназначен для выполнения последовательности команд, записанных в оперативной памяти компьютера. Структура процессора (рис.4.1.), позволяющая реализовать его функции, включает в себя:

·устройство управления (УУ), дешифрирующее команды и вырабатывающее сигналы управления для блоков, выполняющих эти команды;

·арифметико - логическое устройство (АЛУ), выполняющее арифметические и логические операции;

·блок регистров общего назначения (РОН), позволяющий выполнять операции с предельно высокой скоростью;

·блоки сверхоперативной памяти (Кэш 1-го уровня) для хранения команд и данных. Введение Кэш позволяет уменьшить количество обращений к оперативному запоминающему устройству компьютера для чтения последовательности команд и данных;

·блоки, осуществляющие интерфейс с памятью компьютера. Они обеспечивают связь с внешним оперативным запоминающим устройством или блоком быстрой памяти (Кэш 2-го уровня), устанавливаемым между процессором и оперативной памятью;

·системный интерфейс, который обеспечивает связь процессора с системными блоками компьютера и внешними устройствами (ВУ).

Функциональная и структурная организация процессора - student2.ru

Рисунок 4.1. Структурная схема простейшего процессора.

Команда, считанная из ОЗУ, определяет вид действий над операндами, адреса операндов и адрес результата операции. Дешифрация команды в процессоре может быть сразу полной или частичной. При частичной дешифрации часть кода команды передаётся в АЛУ и дешифрируется при выполнении операции.

Классификация процессоров

Классификация процессоров:

1) однокристальный
2) многокристальный
3) многокристальный секционный

По числу больших интегральных схем в микропроцессорном комплекте различают микропроцессоры однокристальные, многокристальные и многокристальные секционные.

Однокристальные микропроцессоры получаются при реализации всех аппаратных средств процессора в виде одной БИС или СБИС (сверхбольшой интегральной схемы). По мере увеличения степени интеграции элементов в кристалле и числа выводов корпуса параметры однокристальных микропроцессоров улучшаются. Однако возможности однокристальных микропроцессоров ограничены аппаратными ресурсами кристалла и корпуса. Для получения многокристального микропроцессора необходимо провести разбиение его логической структуры на функционально законченные части и реализовать их в виде БИС (СБИС). Функциональная законченность БИС многокристального микропроцессора означает, что его части выполняют заранее определенные функции и могут работать автономно.

Многокристальные секционные микропроцессоры получаются в том случае, когда в виде БИС реализуются части (секции) логической структуры процессора при функциональном разбиении ее вертикальными плоскостями. Для построения многоразрядных микропроцессоров при параллельном включении секций БИС в них добавляются средства "стыковки".

Классификация по назначению

Универсальные микропроцессоры могут быть применены для решения широкого круга разнообразных задач. При этом их эффективная производительность слабо зависит от проблемной специфики решаемых задач. Специализация МП, т.е. его проблемная ориентация на ускоренное выполнение определенных функций позволяет резко увеличить эффективную производительность при решении только определенных задач.

Среди специализированных микропроцессоров можно выделить различные микроконтроллеры, ориентированные на выполнение сложных последовательностей логических операций, математические МП, предназначенные для повышения производительности при выполнении арифметических операций за счет, например, матричных методов их выполнения, МП для обработки данных в различных областях применений и т. д. С помощью специализированных МП можно эффективно решать новые сложные задачи параллельной обработки данных. Например, конволюция позволяет осуществить более сложную математическую обработку сигналов, чем широко используемые методы корреляции. Последние в основном сводятся к сравнению всего двух серий данных: входных, передаваемых формой сигнала, и фиксированных опорных и к определению их подобия. Конволюция дает возможность в реальном масштабе времени находить соответствие для сигналов изменяющейся формы путем сравнения их с различными эталонными сигналами, что, например, может позволить эффективно выделить полезный сигнал на фоне шума.



Наши рекомендации