Классическое определение вероятности
Основы теории вероятности
План:
1. Случайные события
2. Классическое определение вероятности
3. Вычисление вероятностей событий и комбинаторика
4. Геометрическая вероятность
Теоретические сведения
Случайные события.
Случайное явление – явление, исход которого однозначно не определен. Это понятие можно трактовать в достаточно широком смысле. А, именно: все в природе достаточно случайно, появление и рождение любого индивидуума есть случайное явление, выбор товара в магазине также случайное явление, получение оценки на экзамене есть случайное явление, заболевание и выздоровление есть случайные явления и т.д.
Примеры случайных явлений:
~ Производится стрельба из орудия, установленным под заданным углом к горизонту. Попадание его в цель случайно, но попадание снаряда в некоторую "вилку", есть закономерность. Можно указать расстояние, ближе которого и дальше которого, снаряд не полетит. Получится некоторая "вилка рассеивания снарядов"
~ Одно и тоже тело взвешивается несколько раз. Строго говоря, каждый раз будут получаться разные результаты, пусть отличающиеся на ничтожно малую величину, но отличаться.
~ Самолет, летая по одному и тому же маршруту, имеет некоторый полетный коридор, в пределах которого может лавировать самолет, но никогда у него не будет строго одинакового маршрута
~ Спортсмен никогда не сможет пробежать одну и туже дистанцию с одинаковым временем. Его результаты также будут находиться в пределах некоторого численного промежутка.
Опыт, эксперимент, наблюдение являются испытаниями
Испытание – наблюдение или выполнение некоторого комплекса условий, выполняемых неоднократно, причем регулярно повторяющихся в оной и тоже последовательности, длительности, с соблюдением иных одинаковых параметров.
Рассмотрим выполнение спортсменом выстрела по мишени. Чтобы он был произведен, необходимо выполнить такие условия как изготовка спортсмена, зарядка оружия, прицеливание и т.д. "Попал" и "не попал" – события, как результат выстрела.
Событие – качественный результат испытания.
Событие может произойти или не произойти События обозначаются заглавными латинскими буквами. Например: D ="Стрелок попал в мишень". S="Вынут белый шар". K="Взятый наудачу лотерейный билет без выигрыша.".
Подбрасывание монеты – испытание. Падение ее "гербом" – одно событие, падение ее "цифрой" – второе событие.
Любое испытание предполагает наступления нескольких событий. Одни из них могут быть нужными в данный момент времени исследователю, другие – не нужными.
Событие называется случайным, если при осуществлении определенной совокупности условий S оно может либо произойти, либо не произойти. В дальнейшем, вместо того чтобы говорить "совокупность условий S осуществлена", будем говорить кратко: "произведено испытание". Таким образом, событие будет рассматриваться как результат испытания.
Примеры:
~ Стрелок стреляет по мишени, разделенной на четыре, области. Выстрел - это испытание. Попадание в определенную область мишени - событие.
~ В урне имеются цветные шары. Из урны наудачу берут один шар. Извлечение шара из урны есть испытание. Появление шара определенного цвета - событие.
Виды случайных событий
1. События называют несовместными, если появление одного из них исключает появление других событий в одном и том же испытании.
~ Из ящика с деталями наудачу извлечена деталь. Появление стандартной детали исключает появление нестандартной детали. События € появилась стандартная деталь" и с появилась нестандартная деталь" - несовместные.
~ Брошена монета. Появление "герба" исключает появление надписи. События "появился герб" и "появилась надпись" - несовместные.
Несколько событий образуют полную группу, если в результате испытания появится хотя бы одно из них. Другими словами, появление хотя бы одного из событий полной группы есть достоверное событие.
В частности, если события, образующие полную группу, попарно несовместны, то в результате испытания появится одно и только одно из этих событий.Этот частный случай представляет для нас наибольший интерес, поскольку используется далее.
Примеры:
~ Приобретены два билета денежно-вещевой лотереи. Обязательно произойдет одно и только одно из следующих событий:
1. "выигрыш выпал на первый билет и не выпал на второй",
2. "выигрыш не выпал на первый билет и выпал на второй",
3. "выигрыш выпал на оба билета",
4. "на оба билета выигрыш не выпал".
Эти события образуют полную группу попарно несовместных событий,
~ Стрелок произвел выстрел по цели. Обязательно произойдет одно из следующих двух событий: попадание, промах. Эти два несовместных события также образуют полную группу.
2. События называют равновозможными, если есть основания считать, что ни одно из них не является более возможным, чем другое.
Примеры:
~ Появление "герба" и появление надписи при бросании монеты - равновозможные события. Действительно, предполагается, что монета изготовлена из однородного материала, имеет правильную цилиндрическую форму, и наличие чеканки не оказывает влияния на выпадение той или иной стороны монеты.
~ Появление того или иного числа очков на брошенной игральной кости - равновозможные события. Действительно, предполагается, что игральная кость изготовлена из однородного материала, имеет форму правильного многогранника, и наличие очков не оказывает влияния на выпадение любой грани.
3. Событие называется достоверным, если оно не может не произойти
4. Событие называется не достоверным, если оно не может произойти.
5. Событие называются противоположным к некоторому событию, если оно состоит из не появления данного события. Противоположные события не совместимые, но одно из них должно обязательно произойти. Противоположные события принято обозначать как отрицания, т.е. над буквой пишется черточка. События противоположные: А и Ā; U и Ū и т.д. .
Классическое определение вероятности
Вероятность - одно из основных понятий теории вероятностей.
Существует несколько определений этого понятия. Приведем определение, которое называют классическим. Далее укажем слабые стороны этого определения и приведем другие определения, позволяющие преодолеть недостатки классического определения.
Рассмотрим ситуацию: В ящике содержится 6 одинаковых шаров, причем 2 - красные, 3- синие и 1-белый. Очевидно, возможность вынуть наудачу из урны цветной (т. е. красный или синий) шар больше, чем возможность извлечь белый шар. Эту возможность можно охарактеризовать числом, которое и называют вероятностью события (появления - цветного шара).
Вероятность - число, характеризующее степень возможности появления события.
В рассматриваемой ситуации обозначим:
Событие А ="Вытаскивание цветного шара".
Каждый из возможных результатов испытания (испытание состоит в извлечении шара из урны) назовем элементарным (возможным) исходом и событием. Элементарные исходы можно обозначать буквами с индексами внизу, например: k1, k2.
В нашем примере 6 шаров, поэтому 6 возможных исходов: появился белый шар; появился красный шар; появился синий шар и т.д. Легко видеть, что эти исходы образуют полную группу попарно несовместных событий (обязательно появится только один шар) и они равновозможные (шар вынимают наудачу, шары одинаковы и тщательно перемешаны).
Элементарные исходы, в которых интересующее нас событие наступает, назовем благоприятствующими исходами этому событию. В нашем примере благоприятствуют событию А (появлению цветного шара) следующие 5 исходов:
Таким образом, событие А наблюдается, если в испытании наступает один, безразлично какой, из элементарных исходов, благоприятствующих А. Это появление любого цветного шара, которых в ящике 5 штук
Вероятностью события А будем считать число, равное отношениюколичества благоприятствующих событию А элементарных исходов к их общему количеству. Обозначают Р(А)
В рассматриваемом примере элементарных исходов 6; из них 5 благоприятствуют событию А. Следовательно, Р(А)=5/6. Это число дает ту количественную оценку степени возможности появления цветного шара.
Определение вероятности:
Вероятностью события А называется отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу.
Р(А)=m/n или Р(А)=m: n, где:
m -число элементарных исходов, благоприятствующих А;
п - число всех возможных элементарных исходов испытания.
Здесь предполагается, что элементарные исходы несовместные, равновозможные и образуют полную группу.
Из определения вероятности вытекают следующие ее свойства:
1. Вероятность достоверного события равна единице.
Действительно, если событие достоверно, то каждый элементарный исход испытания благоприятствует событию. В этом случае m = n следовательно, p=1
2. Вероятность невозможного события равна нулю.
Действительно, если событие невозможно, то ни один из элементарных исходов испытания не благоприятствует событию. В этом случае m=0, следовательно, p=0.
3.Вероятность случайного события есть положительное число, заключенное между нулем и единицей. 0<p(n)<1. Действительно, случайному событию благоприятствует лишь часть из общего числа элементарных исходов испытания. В этом случае 0 < т < n.
В последующих темах будут приведены теоремы, которые позволяют по известным вероятностям одних событий находить вероятности других событий.
Промер. В группе студентов 6 девушек и 4 юношей. Какова вероятность того, что наудачу выбранный студент будет девушка? будет юноша?
pдев = 6 / 10 =0,6 pюн = 4 / 10 = 0,4
Понятие "вероятность" в современные строгие курсы теории вероятностей построены на теоретико-множественной основе. Рассмотрим некоторые моменты такого подхода.
Пусть в результате испытания наступает одно и только одно из событий: wi (i=1, 2, .... п). События wi,- называется элементарными событиями (элементарными исходами). Отсюда следует, что элементарные события попарно несовместны. Множество всех элементарных событий, которые могут появиться в испытании, называют пространством элементарных событий Ω (греческая буква омега заглавная), а сами элементарные события - точками этого пространства..
Событие А отождествляют с подмножеством (пространства Ω), элементы которого есть элементарные исходы, благоприятствующие А; событие В есть подмножество Ω, элементы которого есть исходы, благоприятствующие В, и т, д. Таким образом, множества всех событий, которые могут наступить в испытании, есть множество всех подмножеств Ω, Само Ω наступает при любом исходе испытания, поэтому Ω - достоверное событие; пустое подмножество пространства Ω- -невозможное событие (оно не наступает ни при каком исходе испытания).
Элементарные события выделяются из числа всех событий тем, 'по каждое из них содержит только один элемент Ω
Каждому элементарному исходу wi ставят в соответствие положительное число рi - вероятность этого исхода, причем сумма всех рi равна 1 или со знаком суммы этот факт запишется в виде выражения:
По определению, вероятность Р(А) события А равна сумме вероятностей элементарных исходов, благоприятствующих А. Поэтому вероятность события достоверного равна единице, невозможного - нулю, произвольного - заключена между нулем и единицей.
Рассмотрим важный частный случай, когда все исходы равновозможные, Число исходов равно л, сумма вероятностей всех исходов равна единице; следовательно, вероятность каждого исхода равна 1/п. Пусть событию А благоприятствует m исходов.
Вероятность события А равна сумме вероятностей исходов, благоприятствующих А:
Р(А)=1/n + 1/n+…+1/n = n·1/n=1
Получено классическое определение вероятности.
Существует еще аксиоматический подход к понятию "вероятность". В системе аксиом, предложенной. Колмогоровым А. Н, неопределяемыми понятиями являются элементарное событие и вероятность. Построение логически полноценной теории вероятностей основано на аксиоматическом определении случайного события и его вероятности.
Приведем аксиомы, определяющие вероятность:
1. Каждому событию А поставлено в соответствие неотрицательное действительное число Р(А). Это число называется вероятностью события А.
2. Вероятность достоверного события равна единице:
3. Вероятность наступления хотя бы одного из попарно несовместных событий равна сумме вероятностей этих событий.
Исходя из этих аксиом, свойства вероятностей к зависимости между ними выводят в качестве теорем.