Выбор критерия оптимальности
При решении транспортной задачи выбор критерия оптимальности имеет важное значение. Как известно, оценка экономической эффективности примерного плана может определятся по тому или иному критерию, положенного в основу расчета плана. Этот критерий является экономическим показателем, характеризующим качество плана. До настоящего времени нет общепринятого единого критерия всесторонне учитывающего экономические факторы. При решении транспортной задачи, в качестве критерия оптимальности в различных случаях используют следующие показатели:
1) Объем работы транспорта (критерий - расстояние в т/км). Минимум пробега удобен для оценки планов перевозок, поскольку расстояние перевозки определяется легко и точно для любого направления. Поэтому критерию нельзя решать транспортные задачи с участием многих видов транспорта. С успехом применяется при решении транспортных задач для автомобильного транспорта. При разработке оптимальных схем перевозки однородных грузов автомобилями.
2) Тарифная плата за перевозку груза (критерий - тарифы провозных плат). Позволяет получить схему перевозок, наилучшую с точки зрения хозрасчетных показателей предприятия. Все надбавки, а также существующие льготные тарифы затрудняют его использование.
3) Эксплутационные расходы на транспортировку грузов (критерий - себестоимость эксплутационных расходов). Более верно отражает экономичность перевозок различными видами транспорта. Позволяет делать обоснованные выводы о целесообразности переключения с одного вида транспорта на другой.
4) Сроки доставки грузов (критерий - затраты времени).
5) Приведенные затраты (с учетом эксплуатационных расходов, зависящих от размеров движения и капиталовложения в подвижной состав).
6) Приведенные затраты (с учетом полных эксплуатационных расходов капиталовложений на строительство объектов в подвижной состав).
,
где - эксплутационные издержки,
-расчетный коэффициент эффективности капиталовложения,
- капитальные вложения, приходящие на 1 т груза на протяжении участка,
Т - время следования,
Ц - цена одной тоны груза.
Позволяет более полно производить оценку рационализации разных вариантов планов перевозок, с достаточно полной выраженностью количественно-одновременное влияние нескольких экономических факторов.
Рассмотрим транспортную задачу, в качестве критерия оптимальности которой взята минимальная стоимость перевозок всего груза. Обозначим через тарифы перевозки единицы груза из i-го пункта отправления в j-й пункт назначения, через – запасы груза в i-м пункте отправления, через – потребности в грузе в j–м пункте назначения, а через – количество единиц груза, перевозимого из i-го пункта отправления в j-й пункт назначения. Тогда математическая постановка задачи состоит в определении минимального значения функции
(1)
при условиях
(2)
(3)
(4)
Поскольку переменные удовлетворяют системам линейных уравнений (2) и (3) и условию неотрицательности (4), то обеспечиваются вывоз имеющегося груза из всех пунктов отправления, доставка необходимого количества груза в каждый из пунктов назначения, а также исключаются обратные перевозки.
Таким образом, Т-задача представляет собой задачу ЛП с m*n числом переменных, и m + n числом ограничений - равенств.
Очевидно, общее наличие груза у поставщиков равно , а общая потребность в грузе в пунктах назначения равна единиц. Если общая потребность в грузе в пунктах назначения равна запасу груза в пунктах отправления, т. е.
, (5)
то модель такой транспортной задачи называется закрытойили сбалансированной.
Существует ряд практических задач, в которых условие баланса не выполняется. Такие модели называются открытыми. Возможные два случая:
1)
2)
В первом случае полное удовлетворение спроса невозможно.
Такую задачу можно привести к обычной транспортной задаче следующим образом. В случае превышения потребности над запасом, т. е. вводится фиктивный (m+1)–й пункт отправления с запасом груза и тарифы полагаются равными нулю:
Тогда требуется минимизировать
при условиях
Этим задача сводится к обычной транспортной задаче, из оптимального плана которой получается оптимальный план исходной задачи.
Рассмотрим теперь второй случай.
Аналогично, при вводится фиктивный (n+1)–й пункт назначения с потребностью и соответствующие тарифы считаются равными нулю:
Тогда соответствующая Т-задача запишется так:
Минимизировать
при условиях:
Этим задача сводится к обычной транспортной задаче, из оптимального плана которой получается оптимальный план исходной задачи.
В дальнейшем будем рассматривать закрытую модель транспортной задачи. Если же модель конкретной задачи является открытой, то, исходя из сказанного выше, перепишем таблицу условий задачи так, чтобы выполнялось равенство (5).
В некоторых случаях нужно задать, что по каким-либо маршрутам нельзя перевозить продукцию. Тогда стоимости перевозок по этим маршрутам задаются так, чтобы они превышали самые высокие стоимости возможных перевозок (для того, чтобы было невыгодно везти по недоступным маршрутам) – при решении задачи на минимум. На максимум – наоборот.
Иногда нужно учесть, что между какими-то пунктами отправки и какими-то пунктами потребления заключены договора на фиксированные объемы поставки, то надо исключить объем гарантированной поставки из дальнейшего рассмотрения. Для этого объем гарантированной поставки вычитается из следующих величин:
· из запаса соответствующего пункта отправки;
· из потребности соответствующего пункта назначения.
Пример.
Четыре предприятия данного экономического района для производства продукции используют три вида сырья. Потребности в сырье каждого из предприятий соответственно равны 120, 50, 190 и 110 ед. Сырье сосредоточено в трех местах его получения, а запасы соответственно равны 160, 140, 170 ед. На каждое из предприятий сырье может завозиться из любого пункта его получения. Тарифы перевозок являются известными величинами и задаются матрицей
Составить такой план перевозок, при котором общая стоимость перевозок является минимальной.
Решение. Обозначим через количество единиц сырья, перевозимого из i–го пункта его получения на j–е предприятие. Тогда условия доставки и вывоза необходимого и имеющегося сырья обеспечиваются за счет выполнения следующих равенств:
(6)
При данном плане перевозок общая стоимость перевозок составит
(7)
Таким образом, математическая постановка данной транспортной задачи состоит в нахождении такого неотрицательного решения системы линейных уравнений (6), при котором целевая функция (7) принимает минимальное значение.
Решение транспортной задачи
Основные шаги при решении транспортной задачи:
1. Найти начальный допустимый план.
2. Выбрать из небазисных переменных ту, которая будет вводиться в базис. Если все небазисные переменные удовлетворяют условиям оптимальности, то закончить решение, иначе к след. шагу.
3. Выбрать выводимую из базиса переменную, найти новое базисное решение. Вернуться к шагу 2.
Всякое неотрицательное решение систем линейных уравнений (2) и (3), определяемое матрицей , называется планом транспортной задачи. Опорным (базисным) планом Т-задачи называют любое ее допустимое, базисное решение.
Обычно исходные данные транспортной задачи записывают в виде таблицы.
Матрицу С называют матрицей транспортных затрат, матрицу X, удовлетворяющую условиям Т-задачи (2) и (3) называют планом перевозок, а переменные - перевозками. План , при котором целевая функция минимальна, называется оптимальным.
Число переменных в транспортной задаче с m пунктами отправления и n пунктами назначения равно m*n, а число уравнений в системах (2) и (3) равно m+n. Так как мы предполагаем, что выполняется условие (5), то число линейно независимых уравнений равно m+n–1. Следовательно, опорный план транспортной задачи может иметь не более m+n–1отличных от нуля неизвестных.
Если в опорном плане число отличных от нуля компонент равно в точности m+n–1, то план является невырожденным, а если меньше – то вырожденным.
Как и для всякой задачи линейного программирования, оптимальный план транспортной задачи является и опорным планом.
Построение допустимого (опорного) плана в транспортной задаче
По аналогии с другими задачами линейного программирования решение транспортной задачи начинается с построения допустимого базисного плана. Существует несколько методов построения начальных опорных планов Т-задачи. Из них самый распространенный метод северо-западного угла и метод минимального элемента.
Наиболее простой способ его нахождения основывается на так называемом методе северо-западного угла. Суть метода состоит в последовательном распределении всех запасов, имеющихся в первом, втором и т. д. пунктах производства, по первому, второму и т. д. пунктам потребления. Каждый шаг распределения сводится к попытке полного исчерпания запасов в очередном пункте производства или к попытке полного удовлетворения потребностей в очередном пункте потребления. На каждом шаге q величины текущих нераспределенных запасов обозначаются аi(q), а текущих неудовлетворенных потребностей — bj(q). Построение допустимого начального плана, согласно методу северо-западного угла, начинается с левого верхнего угла транспортной таблицы, при этом полагаем аi(0)= аi, bj(0)= bj. Для очередной клетки, расположенной в строке i и столбце j, рассматриваются значения нераспределенного запаса в i-ом пункте производства и неудовлетворенной потребности j-ом пункте потребления, из них выбирается минимальное и назначается в качестве объема перевозки между данными пунктами: хi,j=min{аi(q), bj(q)}. После этого значения нераспределенного запаса и неудовлетворенной потребности в соответствующих пунктах уменьшаются на данную величину:
аi(q+1)= аi(q) - xi,j, bj(q+1)= bj(q) - xi,j
Очевидно, что на каждом шаге выполняется хотя бы одно из равенств: аi(q+1)= 0 или bj(q+1)= 0. Если справедливо первое, то это означает, что весь запас i-го пункта производства исчерпан и необходимо перейти к распределению запаса в пункте производства i+1, т. е. переместиться к следующей клетке вниз по столбцу. Если же bj(q+1) = 0, то значит, полностью удовлетворена потребность для j-го пункта, после чего следует переход на клетку, расположенную справа по строке. Вновь выбранная клетка становится текущей, и для нее повторяются все перечисленные операции.
Основываясь на условии баланса запасов и потребностей, нетрудно доказать, что за конечное число шагов мы получим допустимый план. В силу того же условия число шагов алгоритма не может быть больше, чем m+n-1, поэтому всегда останутся свободными (нулевыми) mn-(m+n-1) клеток. Следовательно, полученный план является базисным. Не исключено, что на некотором промежуточном шаге текущий нераспределенный запас оказывается равным текущей неудовлетворенной потребности (аi(q)=bj(q)). В этом случае переход к следующей клетке происходит в диагональном направлении (одновременно меняются текущие пункты производства и потребления), а это означает «потерю» одной ненулевой компоненты в плане или, другими словами, вырожденность построенного плана.
Особенностью допустимого плана, построенного методом северо-западного угла, является то, что целевая функция на нем принимает значение, как правило, далекое от оптимального. Это происходит потому, что при его построении никак не учитываются значения ci,j. В связи с этим на практике для получения исходного плана используется другой способ — метод минимального элемента, в котором при распределении объемов перевозок в первую очередь занимаются клетки с наименьшими ценами.
Пример нахождения опорного плана
Поставщики | Потребители и их спрос | Мощность поставщиков | |||
F=14 x11 + 28 x12 + 21 x13 + 28 x14 + 10 x21 + 17 x 22 + 15 x23 + 24 x24 + 14 x31 + 30 x32 +25 x33 + 21 x34
Первоначальный план получен по методу северо-западного угла. Задача сбалансированная (закрытая).
Таблица 1
Стоимость перевозок по данному плану составляет: 1681:
F=14 *27 + 28* 0 + 21*0 + 28*0 + 10 *6 + 17 *13 + 15*1 + 24 *0 + 14 *0 + 30 *0 +25*26 + 21 *17 =1681