Токарные станки и приспособления

Для точения пластмасс используются токарно-винторезные металлорежущие станки. На рис. 1.4 изображен общий вид токарно-винторезного станка.

Токарные станки и приспособления - student2.ru

Рис. 1.4. Общий вид токарно-винторезного станка:

1 – гитара сменных зубчатых колес; 2 – передняя бабка с коробкой скоростей; коробка подач; 4 – станина; 5 – фартук; 6 – суппорт; 7 – задняя бабка; 8 – шкаф с электрооборудованием, 9 – ходовой вал; 10 – ходовой винт

Станина станка 4 представляет собой массивное чугунное основание, на котором смонтированы основные узлы станка. Верхняя часть станины имеет две плоские и две призматические направляющие, по которым перемещаются суппорт и задняя бабка; станина установлена на двух тумбах. Передняя бабка 2 – чугунная коробка, внутри которой расположены главный рабочий орган станка шпиндель и коробка скоростей. Шпиндель представляет собой полый вал, на правом конце которого крепится приспособление, зажимающее заготовку. Шпиндель получает вращение от электродвигателя, расположенного в левой тумбе, через клиноременную передачу и механизм, состоящий из зубчатых колес, размещенных внутри передней бабки. Этот механизм называется коробкой скоростей и служит для изменения частоты вращения шпинделя. Суппорт 6 – устройство для закрепления резца и обеспечения движения подачи, т.е. перемещения резца в продольном и поперечном направлениях. Движение подачи осуществляется вручную или механически. Механическое движение подачи суппорт получает от ходового вала 9 или (при нарезании резьбы) от ходового винта 10. Суппорт состоит из каретки, перемещающейся по направляющим станины; фартука 5, в котором расположен механизм преобразования вращательного движения ходового вала и ходового винта в прямолинейное движение суппорта; поперечных салазок; верхних (резцовых) салазок; резцедержателя. Коробка подач 3 представляет собой механизм, передающий вращение от шпинделя к ходовому валу или ходовому винту. Коробка подач служит для изменения скорости движения подач суппорта. Гитара 1 предназначена для настройки станка на различные шаги нарезаемых резьб. Задняя бабка 7 служит для поддержания конца длинных заготовок и для закрепления в ней различных инструментов – сверл, зенкеров, разверток и т.д. Электрооборудование станка размещено в шкафу 8.

Для включения и выключения двигателя, пуска станка, управления коробками скоростей и подач, механизмом фартука и т.д. имеются соответствующие органы управления. Для закрепления заготовок на шпинделе токарного станка применяют зажимные приспособления: патроны, центры, оправки и др.

Режущий инструмент

Обточка пластмассовых заготовок производится токарными резцами. По конструкции резцы могут быть цельные (выполненные из одного материала) и составные (державка – из конструкционной стали, а рабочая часть – из специального инструментального материала). Рабочая часть составного резца прикрепляется к державке обычно сваркой или припаиванием. В качестве инструментальных сталей для изготовления резцов (или их рабочей части) применяются углеродистые, легированные и быстрорежущие стали, а также твердые сплавы. Углеродистые стали ввиду их невысокой стойкости имеют ограниченное применение. Резцы из быстрорежущих сталей Р9, Р18 применяются при обработке многих видов термопластов и реактопластов, кроме стеклопластиков. В последнее время широкое применение нашли резцы с алмазными зернами, имеющими исключительно высокую стойкость. Низкая механическая прочность алмаза затрудняет применение этих резцов при точении прерывистых поверхностей и черновой обработке.

Режимы резания

Режимы резания – это совокупность технологических параметров токарной обработки заготовок. К таким параметрам относятся: скорость резания V, подача S, глубина резания t. Производительность обработки и качество поверхности изделия существенно зависят от выбранных режимов резания. Так, увеличение всех параметров резания повышает производительность токарной обработки. В то же время увеличение скорости резания приводит к повышению температуры обрабатываемой заготовки и интенсивному износу инструмента, к понижению его стойкости. Повышение температуры материала заготовки может привести к его деструкции и ухудшению качества обрабатываемой поверхности. Величина подачи также влияет на качество поверхности: увеличение подачи выше определенного значения является причиной шероховатой поверхности.

Применение алмазного режущего инструмента позволяет существенно увеличить производительность труда и улучшить качество обрабатываемой поверхности.

Фрезерование пластмасс

Фрезерование – технологическая операция, заключающаяся в обработке плоских и фасонных поверхностей, поверхностей тел вращения, прорезания канавок, пазов, шлицей, нарезания зубьев и т.д.

Режущим инструментом при фрезеровании служит фреза, которая закрепляется в шпинделе станка и получает вращательное движение.

Скорость резания при фрезеровании V (м/мин) определяется по формуле

V=pDфn/1000,

где Dф – диаметр фрезы, мм; n – частота вращения шпинделя, об/мин.

Подача осуществляется столом, на котором закреплена заготовка. Скорость подачи обычно определяется в мм на один зуб фрезы - Sz, тогда минутная подача Sм, т.е. величина перемещения заготовки за одну минуту, равна

Sм=Sznz,

где z – число зубьев фрезы

Число зубьев фрезы выбирается из расчета размещения стружки во впадине зуба.

Типы фрез

При обработке заготовок и деталей из пластмасс применяются фрезы для обработки металлов, так как специальные фрезы для фрезерования пластмасс выпускаются в очень узком ассортименте.

На рис. 1.5 изображены наиболее распространенные типы фрез, применяемые при обработке пластмассовых заготовок.

Токарные станки и приспособления - student2.ru Рис. 1.5. Схема фрезерования поверхностей деталей из пластмасс цилиндрическими (а), торцовыми (б), дисковыми трехсторонними (в) и пазовыми (г), концевыми (д) и угловыми (е) фрезами  

Цилиндрические фрезы (рис. 1.5, а) применяются при фрезеровании плоских поверхностей шириной до 120 мм. Фреза имеет базовое отверстие со шпоночной канавкой, в которое вставляется оправка, передающая ей вращение от шпинделя станка.

Торцовые фрезы (рис. 1.5, б) имеют диаметр Dф до 600 мм и применяются для обработки широких плоских поверхностей.

Дисковые фрезы (рис. 1.5, в, г) имеют диаметр Dф=60÷110 мм и цилиндрическое базовое отверстие для крепления на оправке. Режущие зубья выполняются на цилиндрической внешней поверхности, а также и на торцовых поверхностях. Дисковые фрезы предназначены для фрезерования канавок и пазов до 16 мм.

Концевые фрезы (рис. 1.5, д) имеют наружный диаметр рабочей части от 3 до 50 мм и предназначены для обработки открытых пазов, замкнутых профильных углублений и отверстий в плоских заготовках.

Угловые фрезы (рис. 1.5, е) применяются для фрезерования профильных угловых канавок; имеют диаметр Dф=35÷90 мм.

В качестве материала для фрез применяются инструментальные стали, быстрорежущие стали, используются также фрезы с пластинками из твердых сплавов. Для обработки деталей из термопластов рекомендуются фрезы из инструментальной стали, для обработки деталей из реактопластов – фрезы из быстрорежущей стали и с пластинками из твердых сплавов.

Значения переднего γ и заднего α углов зависят от материала фрез и обрабатываемого материала. Оптимальная величина переднего угла зуба фрез из быстрорежущей стали 10º, с пластинками из твердых сплавов γ=5÷8º. Оптимальное значение заднего угла α=18÷20º.

Режимы резания

Так же, как и при точении пластмасс, режимы резания при фрезеровании включают в себя такие параметры, как скорость резания V, подача S, глубина резания t.

Величина врезания фрезы lвр зависит от глубины резания t и диаметра фрезы Dф. Для цилиндрического фрезерования lвр определяется по формуле

lвр= Токарные станки и приспособления - student2.ru ;

для торцового фрезерования

lвр=0,5 Токарные станки и приспособления - student2.ru

Глубина резания t при цилиндрическом фрезеровании составляет 1-2 мм, при торцовом – 5-10 мм.

Наши рекомендации