Элементы воздушных линий связи
Провода.На провода воздушных линий воздействуют ветры, дожди, иней, гололёд, резкие изменения температуры, химические вещества, выделяемые в атмосферу заводами и фабриками, и т.д. Поэтому линейная проволока, используемая для проводов этих линий, должна обладать хорошей механической прочностью, гибкостью, устойчивостью против коррозии и быть сравнительно недорогой, а также обладать высокой электропроводностью. Наибольшее распространение на линиях связи получили стальная, медная и биметаллическая проволоки.
Стальная проволока имеет хорошие механические свойства. Для устойчивости против коррозии её покрывают слоем цинка. Недостатком такой проволоки является значительное возрастание затухания с ростом частоты передаваемого тока, что объясняется сильным проявлением поверхностного эффекта из-за большой магнитной проницаемости стали. Стальную проволоку применяют преимущественно для цепей оперативно-технологической связи низшего уровня, на линиях О, Н и У диаметром 3-5 мм, а на линиях типа ОУ – только диаметром 5 и 4 мм. На линиях III класса обычно используют проволоку диаметром 3; 2,5 и 1,5 мм.
Медную проволоку из-за дороговизны используют только для высокочастотных цепей магистральной и дорожной связи. Она обладает достаточной механической прочностью и мало подвержена коррозии, так как на воздухе покрывается плёнкой окиси меди, защищающей провод от дальнейшего разрушения.
Биметаллическая сталемедная проволока (БСМ) состоит из двух металлов: стального сердечника с повышенным пределом прочности (1180-1370 МПа) и наложенного на него термическим способом слоя меди толщиной 0,14...0,2 мм для проволоки с общим диаметром 4 мм и 0,11...0,15 мм – для проволоки диаметром 3 мм. Механическая прочность таких проводов выше, чем стальных и медных, электрические характеристики для высоких частот близки к характеристикам медных проводов. Применение сталемедной проволоки позволяет значительно экономить медь.
Биметаллическая сталеалюминиевая проволока (БСА) имеет стальной сердечник диаметром 3 или 4 мм, на котором методом горячего опрессовывания нанесён слой алюминия толщиной 0,55 мм. Она обладает меньшей механической прочностью и стойкостью против коррозии, чем сталемедная проволока.
При устройстве удлинённых пролётов и переходов через электрифицированные железные дороги используют многопроволочные тросы (канатики), обладающие высокой прочностью. Для цепей из стальной проволоки применяют стальные тросы из семи проволок диаметром 4,2 и 6,6 мм, а для цветных цепей -–бронзовые марок ПАБ-10 и ПАБ-25 площадью поперечного сечения соответственно 10 и 25 мм.
Для крепления линейных проводов к изоляторам служит мягкая перевязочная проволока: стальная оцинкованная для стальных проводов, медная для медных и биметаллических. Диаметр перевязочной проволоки зависит от диаметра линейного провода. Для линейных проводов диаметром 5,4 и 3,5 мм берут перевязочную проволоку диаметром 2,5 мм, а при диаметре 3 мм – перевязочную проволоку диаметром 2 мм.
При подвесе проводов натяжение регулируется стрелой провеса, т.е. расстоянием по вертикали между линией, соединяющей точки подвеса провода и самой низкой точкой провода в пролёте. В процессе подвески проводам надо придать такую монтажную стрелу провеса, чтобы в самых трудных метеорологических условиях напряжения в проводе не превышали бы допустимых.
Опоры. Деревянные опоры можно использовать при строительстве линий в лесистых районах, в которых разрешена заготовка лесоматериалов. Деревянные опоры устанавливаются на участках сближения с высоковольтными линиями, если опасные индуктивные напряжения превышают допустимые для железобетонных опор по нормам техники безопасности.
Во всех остальных случаях следует применять железобетонные опоры. Основным элементом таких опор чаще всего является центрифугированная, пустотелая коническая стойка, хотя имеются и другие виды железобетонных стоек. Железобетонные опоры долговечнее деревянных, позволяют сохранить лес, не боятся повышенной влажности, а также высоких и низких температур. Повышенные первоначальные затраты средств на их строительство оправдываются с течением времени. Общим недостатком всех железобетонных конструкций является большой вес и меньшая транспортабельность, чем деревянных.
Наибольшее распространение получили конструкции (стойки) из железобетона в виде полого усечённого конуса длиной 6,5; 7,5; 8,5 и 9,5 м.
Они различаются по типам в зависимости от значения изгибающего момента. Наружный диаметр верхней части (вершины) конструкций всех типов 230 мм, нижней части (комля) 320... 373 мм, а толщина стенок 40...55 мм в зависимости от длины и типа конструкции. Масса стоек 520…1000 кг. Для защиты от попадания влаги внутрь стойки оба торцовых отверстия закрывают пробками. Закапываемую в землю часть опоры покрывают битумной мастикой для предотвращения разрушения бетона и арматуры от воздействия блуждающих токов и находящихся в земле химических веществ. Траверсы крепят к стойке болтом и подкосами.
Деревянные столбы изготавливают из лиственницы, сосны, кедра, ели и пихты. Их делают из брёвен длиной 5,5; 6,5; 7,5; 8,5 и 9,5 м и диаметром в вершине 12…24 см; длиной 11 и 13 м и диаметром в вершине 18…24 см.
Не допускается использовать древесину, поражённую грибковыми заболеваниями, и сухостой.
Срок службы деревянных опор, установленных непосредственно в грунт,- от четырёх до восьми лет в зависимости от характера грунта. Для увеличения срока службы столбы пропитывают противогнилостными веществами (антисептиками) или устанавливают в искусственные основания. При пропитке древесины столбов на специальных заводах смесью креозота (60%) с мазутом (40%) срок службы увеличивается до 18-25 лет. Другие способы пропитки (бандажный, суперобмазки и т.д.) менее эффективны.
Гниение древесины происходит главным образом у поверхности земли (в наиболее опасном месте с точки зрения механических напряжений). Если столб поднять над землёй, укрепив в приставках из материала, не поддающегося гниению, то срок службы его будет значительно больше. Приставки применяют также для увеличения длины столба. Наибольшее распространение получили железобетонные приставки трапецеидального сечения (ПТ) нескольких типов, отличающихся длиной и допустимым значением изгибающего момента. Применяются также приставки прямоугольного сечения (ПР).
На линиях I и II классов каждую опору устанавливают с двумя приставками. Приставки 1 крепят к столбу проволочными хомутами 2 (рис. 1). Приставки из пропитанной древесины устанавливают чаще всего для увеличения длины опоры и крепят к столбу аналогично железобетонным. Опоры воздушных линий разделяют на простые и сложные. Простыми называют опоры, состоящие из деревянного столба или железобетонной стойки, оснащённых арматурой и не имеющих дополнительных креплений. Сложные опоры состоят из простых опор и дополнительных креплений в виде подпор, оттяжек, двух столбов или стоек. Железобетонные опоры укрепляют только оттяжками.
Рис. 1
К простым относят промежуточные опоры, устанавливаемые на прямолинейных участках трассы линии; к сложным – угловые, полуанкерные, анкерные, усиленные, оконечные, кабельные и т.д.
Угловые опоры устанавливают в местах изменения направления трассы линии. Их укрепляют подпорой или оттяжкой, подпорой и оттяжкой в зависимости от числа проводов, типа линии и угла поворота трассы, определяемого нормальным вылетом угла. Угловая опора, укреплённая подпоркой, показана на рис. 2.а, где 1 – траверсы; 2- подпора; 3 – лежень; 4 – поперечный брус. Угловая опора, укреплённая оттяжкой, изображена на рис. 2.б, где 1 – оттяжка; 2 – якорный лежень; 3 – якорный жгут.
Рис. 2
Нормальным вылетом угла называют длину перпендикуляра, опущенного из вершины угла на прямую, соединяющую две точки на трассе линии, каждая из которых удалена от вершины угла на 50 м. Такое измерение углов поворота линии упрощает работы по разбивке трассы, так как в этом случае не требуются специальные угломерные инструменты и обученный персонал.
Подпорой и оттяжкой угловые опоры укрепляют в тех случаях, когда нормальный вылет угла более 5 м, а число проводов более 16. Оттяжки устраивают из стального троса или скрученных вместе нескольких кусков стального линейного провода диаметром 4 или 5 мм. Число проволок в оттяжке и место крепления её к опоре зависят от типа линии и числа подвешиваемых проводов. Якорный жгут свивают, как и оттяжку, из стальной линейной проволоки того же диаметра. Если по местным условиям невозможно установить подпору или оттяжку, то в качестве угловых опор применяют П-образные опоры (рис. 3).
Рис. 3 | Рис. 4 |
Полуанкерные, анкерные и усиленные опоры применяют для увеличения устойчивости и ограничения возможных разрушений линий при обрывах проводов. Их устанавливают на прямолинейных участках трассы, на линиях О и Н через 3 км, У – через 2 км и ОУ – через 1 км. Полуанкерная опора показана на рис. 4, где 1 – поперечные брусья; 2 – подпоры; 3 – раскос. Подпоры полу анкерных опор могут быть заменены четырьмя оттяжками, устанавливаемыми по две с каждой стороны опоры. Такие опоры называют анкерными. Усиленная опора (устанавливают при крюковом профиле) приведена на рис. 5, где 1 – подпоры, 2 – лежни.
Рис. 5 | Рис. 6 |
Противоветровые опоры (рис. 6, где 1- подпора; 2 – лежни) применяют для устойчивости линии при боковых ветрах. Эти опоры размещают на середине участков между полу анкерными, анкерными или усиленными опорами. Подпоры устанавливают перпендикулярно трассе линии поочерёдно (то с одной стороны трассы, то с другой).
Оконечные опоры размещают в начале и конце линии у вводов в здания.
Кабельные опоры служат для перехода воздушной линии в кабельную. При числе проводов до 16 в качестве оконечной или кабельной применяют простую опору, укреплённую подпорой со стороны тяжения проводов или оттяжкой с противоположной стороны, при числе проводов более 16 – полуанкерную.
Для соединения проводов воздушной линии с жилами кабеля применяют шкафы магистральной связи (ШМС), устанавливаемые у основания опоры и кабельные ящики.
Шкафы ШМС (рис. 7) изготавливают из стали. В верхней части шкафа имеется горловина 4, на которой укреплён металлический желоб 3, соединяемый с деревянным желобом 2, укрепленным на опоре 1. В днище шкафа ШМС имеются отверстия для ввода кабеля. В шкафу размещаются приборы защиты, боксы магистральной связи (БМ), служащие для оконечной разделки кабеля, и другое оборудование. Провода воздушной линии получают оконечную заделку на изоляторах опоры и проводом с атмосферостойким покрытием, прокладываемым в желобе, подключаются к защитным устройствам, соединённым с жилами кабеля на зажимах бокса, в котором разделан кабель.
Рис. 7 | Рис. 8 | Рис. 9 |
Для низкочастотных цепей применяется провод ЛТР-В с атмосферостойким покрытием, для высокочастотных цепей - коаксиальный кабель РК-75. Внешний провод коаксиального кабеля заземляют.
Шкафы ШМС изготовляют нескольких типов, рассчитанных на установку оборудования для различного числа цепей.
В болотистых грунтах для получения большей устойчивости опору укрепляют подпорами 1 (рис. 8). Подпоры между собой и с опорой скрепляют брёвнами – лежнями 2. При постройке линии в районах вечной мерзлоты, в местах, где наблюдается выталкивание столбов из грунта, применяют ряжи – квадратные деревянные срубы высотой 1000 мм и площадью 2,5…4 м2, засыпаемые землёй или щебнем, в которые и устанавливают опоры.
Для проведения испытаний и определения места повреждения проводов на станциях, а также на границах дорог и дистанций сигнализации и связи устанавливают контрольные опоры (рис. 9). Провода на этих опорах разрезают и соединяют при помощи линейных сжимов. Контрольные опоры оборудуются заземлением, ступеньками 1 и дополнительной траверсой 2 для удобства производства испытаний. Выбор диаметров для конкретных опор можно осуществлять на основании механических расчётов или по специальным таблицам. То же касается и глубины закопки опор, зависящей от типа линии, нагрузки опор и свойств грунта.
Профиль опоры. Порядок расположения цепей на опоре воздушной линии называют профилем опоры. При подвеске проводов на крюках профиль называют крюковым, при подвеске на траверсах – траверсным, а в случае одновременного применения крюков и траверс – смешанным. Для упрощения составления схем скрещивания проводов и упорядочения линейного хозяйства разработано десять типовых профилей. Пять из них, распространённых на железнодорожном транспорте, приведены на рис. 10.
Рис. 10
Использование того или иного профиля зависит от общего числа подвешиваемых проводов и числа цепей, уплотняемых токами высокой частоты. При траверсном профиле на опоре можно подвесить значительно больше проводов, чем при крюковом, без увеличения длины опоры. Длина опоры равна сумме длин: верхней части (на которой укреплены траверсы и крюки, максимальной для данного района стрелы провеса проводов) расстояния от нижней точки нижнего провода до земли или рельсов (при переходе через железные дороги), установленного Правилами технической эксплуатации железных дорог России, и глубины закопки опоры в землю.
Глубина закопки зависит от характера грунта, числа подвешиваемых проводов и длины опоры. При числе подвешиваемых проводов от 12 до 24 для опор длиной 6,5; 7,5 и 8,5 м глубина закопки в твёрдом и болотистом грунтах соответственно равна 1,5 и 1,6 м, а в мягких грунтах на 0,15 м больше.