Какова функция собирающей линзы в проекторной фаре
Проекторные фары
Иначе говоря - линзы. Они состоят из источника света (нить накаливания или газоразрядная дуга), эллипсоидного (это если взять крутануть вокруг оси Икс эллипс, т.е. геометрическое место точек, для каждой из которых сумма расстояний до двух заданных, называемыми фокусами эллипса, есть константа; возьмите карандаш, бумагу, две иголки и нитку; вбейте иголки в бумагу - это будут фокусы, закрепите концы нитки в иголках, вставьте карандаш в нитку, натяните её и проведите линию таким образом, чтобы нитка всё время была натянута - вы только что нарисовали эллипс! Ура!) отражателя, светоотсекающего экрана (для противотуманных фар и фар ближнего света) и конденсаторной линзы. Работает вся эта тряхомундия так: источник света находится в одном фокусе отражателя, в другом фокусе (где собирается все отражённые отражателем лучи из первого фокуса) находится светоотсекающий экран и эта же точка является фокусом конденсаторной линзы, которая проецирует на дорогу то, что осталось после экрана. В принципе, фокус линзы и эллипсоида не обязательно должны совпадать (эти можно играться, чтобы получить разной ширины световой поток), но светоотсекающий экран всегда находится в фокусе линзы, из-за чего светотеневая граница у проекторной оптики очень чёткая.
Вкратце о любимой некоторыми синеве в зоне светотеневой границы линзованной оптики - это иза дифракции (огибания волнами препятствия). Степень малиновой синевы можно варьировать, играясь с толщиной светоотсекающего экрана.
У проекторных (линзованных) фар рассеивателя нет, как и у FF-фар, стекло выполняет только защитные от окружающей среды функции. Все светораспределение осуществляется до стекла.
30. Назначение балластного блока газоразрядной лампы
Ксеноновые лампы представляют собой газоразрядные лампы, в которых используется электрическая дуга, а не нить, как в галогенных лампах. Дуга поджигается, а затем поддерживается между двумя точно расположенными электродами. Для этого необходим электронный балластный блок. Для ламп, относящихся к типу D2 (D2S — используются в проекционных фарах;D2R — используются в рефлекторных фарах (экран выполнен краской на колбе)), требуется пусковой импульс. Средним значением напряжения искры может служить 7 кВ, однако для надежной работы требуется напряжение от 10 до 12 кВ. В автомобилях требуется возможность повторного включения горячей лампы с высоким давлением паров ртути, а для этого требуется еще большее напряжение — от 12 до 15 киловольт и даже выше. Только так можно обеспечить достаточную надежность. Стандартные балластные блоки обеспечивают пусковое напряжение не менее 18 киловольт, при этом обычное значение составляет 20 киловольт. После формирования электрической дуги балластный блок должен ограничить подачу тока. В противном случае по дуге будет протекать крайне сильный ток, что отрицательно скажется на лампе и на других узлах. Напряжение на прогретой лампе обычно составляет 80-90 вольт, однако во время прогрева оно ниже. Балластный блок на начальной стадии прогрева должен поддерживать на лампе напряжение около 16 вольт, хотя обычно это напряжение бывает несколько выше, по крайней мере 20 вольт. Если напряжение на лампе составляет от 70 до 110 вольт, балластный блок должен обеспечить подачу мощности в 35 ватт. Если напряжение ниже, балластный блок должен обеспечить ток не менее 0,5 А, но обычно не более 2 А, при этом мощность должна быть как можно ближе к 35 Вт. Большая сила тока является предпочтительной — частично прогретая лампа с галоидами металла иногда образует неустойчивую дугу при слабом токе. Автомобильные балластные блоки часто обеспечивают более высокую мощность (более 35 Вт) во время прогрева, чтобы обеспечить световой поток, близкий к рабочему. Следует отметить, что ксеноновая дуга или дуга паров ртути не создает видимого света с той эффективностью, с которой это делает дуга галоидов металлов. Автомобильные балластные блоки с увеличенной мощностью этапа прогрева имеют цепь, моделирующую тепловые характеристики лампы.
Во время подачи повышенной мощности на этапе прогрева сила тока не должна превышать максимального значения, безопасного для электродов лампы. Напряжение на лампе превышает 110 В только на ранней стадии формирования дуги или если лампа неисправна. Балластный блок должен обеспечивать мощность, достаточную для прогрева электродов до формирования дуги — чем больше, тем лучше, при этом мощность более 35 Вт приемлема, если ток не превышает допустимого значения. Однако избыточная мощность, поданная на старую лампу, может привести к ее взрыву. Для ламп D2 и для большинства других ламп с галоидами металлов требуется переменный ток. Подача постоянного тока допускается лишь на короткое время и желательно только на холодную лампу. Электрическое поле постоянного тока, горячий кварц или горячее стекло, соли или спирты являются не самым лучшим сочетанием — могут возникнуть эффекты электролиза, которые приведут к образованию темных пятен или трещин на газоразрядной трубке. Переменный ток, подаваемый на лампу типа D2, обычно имеет частоту от пары сотен до нескольких сотен герц. На лампу типа D2 обычно подается переменный ток прямоугольной формы или близкой к ней. Импульс высокого напряжения, необходимый для поджига лампы, обычно формируется цепью высокого напряжения, состоящей из трансформатора высокого напряжения, конденсатора и коммутируемого искрового зазора (SSG), который накладывается на рабочее напряжение лампы. С точки зрения начального значения поджига SSG, напряжение в разомкнутой цепи обычно выбирается так, чтобы превышать номинальное значение SSG на 30%. Это напряжение следует рассматривать как максимальное напряжение зарядки конденсатора. Энергия импульса напряжения должна быть достаточна для поджига лампы с первой попытки — как можно сильнее — даже несмотря на то, что свойства лампы и SSG изменяются в зависимости от температуры и срока эксплуатации. Накапливаемой в конденсаторе энергии от 20 до 50 мДж обычно бывает достаточно для надежного поджига. И конденсатор, и коммутируемый искровой зазор должны быть рассчитаны на эксплуатацию при температуре от -40 до +125°C (часто до +150°C), а также в условиях повышенной вибрации.