Структурная схема волоконно-оптической линии передачи

Разработка световодных систем и их опытная эксплуатации на железнодорожном транспорте началась в начале 80-х годов. В этих системах связи сигналы, несущие информацию, передают по оптическим световодам. Последние представляют собой тонкие нити специальной конструкции, изготовленные из диэлектрического материала, прозрачного для применяемого излучения (кварцевое или многокомпонентное стекло, полимер, некоторые галоидные соединения). Волоконные световоды из особо чистого кварцевого стекла (ОСЧ-кварцевого стекла) называются оптическими волокнами и составляют основу оптических кабелей.

Перспективность волоконно-оптических линий передачи (ВОЛП) обусловлена большой пропускной способностью волокна, защищенностью от внешних электромагнитных полей, вследствие чего не требуется применять специальные меры по защите от опасных напряжений линий электропередачи и электрифицированных железных дорог; возможность прокладки кабеля между точками с большой разностью потенциалов; высокой помехозащищенностью цифровых линейных трактов; малой металлоемкостью и отсутствием дефицитных цветных металлов (медь, свинец) в кабеле; малым значением коэффициента затухания в широкой полосе частот, что обеспечивает большие длины регенерационных участков по сравнению с электрическими кабелями (10—150 км вместо 2—6 км); небольшими размерами кабеля.

Структурная схема ВОЛП показана на рисунке 75 Для работы одной многоканальной системы связи требуются два оптических волокна (ОВ): по одному передаются сигналы в направлении от А к Б, по другому — в обратном. В оконечных пунктах передающий оптоэлектронный модуль (ПОМ) предназначен для преобразования электрических сигналов в оптические. Приемный оптоэлектронный модуль (ПРОМ) предназначен для преобразования оптических сигналов в электрические.

Структурная схема волоконно-оптической линии передачи - student2.ru

Рисунок 75 - Структурная схема

Основными элементами приемопередающих модулей являются источник излучения с длиной волны, соответствующей одному из минимумов полных потерь в оптическом волокне, и приемник излучения. Оба модуля содержат электронные схемы для преобразования электрических сигналов и стабилизации режимов работы и разъемные соединители. Линейный тракт содержит оптический кабель (ОК), в который через примерно равные промежутки включены линейные регенераторы, а в случае использования вол-нового уплотнения оптических волокон — оптические усилители.

Дальность непосредственной связи по ВОЛИ, так же, как и длина регенерационного участка, зависит от параметров оптических волокон и энергетических характеристик приемопередающих устройств.

Источник оптического излучения. Основным элементом передающего оптоэлектронного модуля является источник оптического излучения. Работа различных источников оптического излучения основана на инверсной заселенности энергетических уровней. Создание инверсной заселенности уровней называется накачкой.

Переходы с верхнего уровня на нижний могут быть спонтанными (самопроизвольными), что характерно для обычных светоизлучающих диодов (светодиодов), а также спонтанными и вынужденными (суперлюминесцентные светоизлучающие диоды) и только вынужденными (лазеры).

Излучение обычных светодиодов является некогерентным и слабонаправленным, ширина спектра излучения составляет (20—40) нм. Супер люминесцентные светодиоды имеют более высокую яркость и малую излучающую поверхность по сравнению с обычными светодиодами. Длина волны светового излучения зависит от состава полупроводникового материала.

В качестве направленных источников излучения наибольшее применение получили полупроводниковые инжекционные лазеры. Они легко позволяют осуществить внутреннюю модуляцию оптического излучения по интенсивности. Ширина спектра излучения полупроводникового лазера менее 2 нм.

Выбор источника излучения определяется областью применения системы передачи. Светодиоды используют в системах, предназначенных для работы на сравнительно небольшую дальность (примерно 10 км) и скорость передачи до 200 Мбит/ с. Светодиоды обладают лучшей линейностью характеристик, большим сроком службы, более слабой температурной зависимостью излучаемой мощности, чем лазеры. К недостаткам светодиодов следует отнести малую мощность излучения и невысокий к.п.д. согласования с оптическим волокном.

Лазерные источники излучения применяют преимущественно в системах передачи с большой дальностью и высокой скоростью передачи. Они обеспечивают высокий к.п.д. согласования с оптическим волокном.

Приемник оптических сигналов. Основным элементом приемного оптоэлектронного модуля является приемник оптических сигналов. В качестве приемника используют фотодиоды и лавинные фотодиоды. Известно, что в р-п переходе, на который подано обратное смещение, существует зона, в которой нет свободных носителей заряда (обедненная зона). Поглощение фотона в этой зоне сопровождается возникновением пары носителей зарядов — электрона и дырки, которые под действием постоянного электрического поля, созданного внешним источником напряжения смещения, перемещаются к противоположным зажимам фотоприемника, образуя ток во внешней цепи. Этот ток и является сигналом на выходе фотодиода, его значение пропорционально мощности принимаемого светового излучения.

Когда световая мощность очень мала (нановатты), фототеки также малы (наноамперы), и в этом случае для уменьшения влияния шума (тепловые шумы, квантовые шумы) используют внутренее усиление в фотоприемнике (лавинный фотодиод) за счет эффекта лавинного умножения носителей заряда. Лавинные фотодиоды усиливают первичный фототок прежде, чем на полезный сигнал накладываются шумы. Однако они требуют более высокого напряжения питания и его стабильности.

Наши рекомендации