Сколько тепла способен удержать дом зимой?
В теории и на практике законы термодинамики говорят нам всё, что нам нужно знать об отоплении и охлаждении. Вам приходится отапливать дом, потому что зимой на улице холоднее, чем в помещении (второй закон). Всё тепло, которое дом теряет, поступает в окружающее пространство: землю под ним и воздух вокруг него (первый закон). Чтобы поддерживать в доме постоянную температуру, вы должны обеспечивать его таким же количеством энергии (в форме электроэнергии, газа или другого топлива), какое он теряет (снова первый закон). Как бы мы ни хотели этого, наши дома сами по себе зимой теплее не станут, «засасывая» тепло снаружи (второй закон). Хотя есть, конечно, хитрости вроде тепловых насосов , о которых мы поговорим ниже.
Всё это настолько очевидно, что последствия действия этих законов мы уже не замечаем. В зимние месяцы авторы редакционных статей кричат о растущих ценах на энергию, скандалах, связанных с «энергетической бедностью» (когда людям не хватает средств на то, чтобы отапливать свои дома), и о «неприлично» высоких прибылях энергетических компаний. По иронии судьбы, температуры на Земле по абсолютным значениям могут считаться средними и постоянными. Ведь минимально возможная температура, абсолютный ноль , составляет –273,15 °C (0 градусов Кельвина) и до сих пор не достигнута даже в лабораторных условиях. Самое холодное место, которое мы можем себе представить, находится внутри огромной черной дыры, и имеет температуру на миллиардную долю градуса выше абсолютного ноля[214]. На другой стороне температурного спектра ученым удалось к настоящему времени достичь максимальной температуры внутри Большого адронного коллайдера – гигантской машины по разгону и сталкиванию частиц в Швейцарии: 5 трлн °C – примерно в 350 000 раз больше, чем в ядре Солнца[215].
В свете таких экстремальных значений наша повседневная борьба за тепло и прохладу кажется банальщиной. Но независимо от того, находитесь ли вы в черной дыре, вращаетесь с неимоверной скоростью внутри адронного коллайдера или дрожите от холода во временном модуле в Антарктике, вы не можете игнорировать законы физики. Если внешняя температура составляет, например, 0 °C, а мы хотим получить в помещении комфортную для нас температуру 18–20 °C, законы термодинамики однозначно указывают на то, что нам придется заплатить за комфорт, и даже говорят, сколько именно. Давайте посчитаем.
Согреваемся
С чего начать? В теории всё просто. Нужно переписать все предметы, находящиеся в вашей комнате, включая даже ткани, и взвесить их. Измерить внешнюю температуру (скажем, она будет равна 0 °C) и решить, какая температура нужна внутри помещения (скажем, 20 °C). Для каждого материала нужно найти значение удельной теплоемкости (см. главу 2), которое подскажет вам, сколько энергии нужно для того, чтобы нагреть 1 кг конкретного материала на 1 °C. Затем в результате простых вычислений вы можете узнать, сколько энергии необходимо для нагревания всех материалов в помещении до 20 °C, и это количество (благодаря первому закону термодинамики) укажет вам, сколько энергии потребуется на отопление вашего дома.
Вдобавок благодаря этому упражнению вы поймете, что термодинамически ваш дом – не просто коробка, наполненная воздухом. Если вы уезжали из дома зимой на пару недель, то наверняка знаете, что для его прогрева по возвращении нужны по крайней мере два-три дня. Почему? Не только потому, что он охладился больше, чем обычно, но и потому, что каждый атом или молекула в каждом предмете в вашем доме (в теории) потеряли часть кинетической энергии. Чтобы прогреть дом до комфортной температуры, вы должны нагреть каждый атом в нем: в каждом стуле, кресле, книге, наволочке, ручке, карандаше, картинной рамке. Нужно немало времени, чтобы «закачать» энергию во все имеющиеся дома предметы и материалы.
Конечно, подсчитать, сколько тепла нужно вашему дому, сложив теплоемкость всех предметов в нем, довольно трудно. Но есть еще один метод вычисления объемов этого тепла, хотя и не столь точный. Предположим, вы живете в двухэтажном доме с террасой, в котором есть две комнаты на втором этаже и две на первом. В каждом помещении установлен домашний электрический тепловой аккумулятор[216]. Можно предположить, что для нагрева внутреннего пространства до комфортной температуры нужно примерно два дня, в течение которых тепловые аккумуляторы будут работать c максимальной производительностью. Как всё во Вселенной, нагреватели подчиняются закону сохранения энергии (первому закону термодинамики). Если предположить, что они полностью отдают тепло за время с утра до ночи, эта тепловая энергия будет равна электрической энергии, которую они потребляют в течение ночи (скажем, семь часов). Тогда за два дня они будут потреблять электричество 4 × 7 × 2 = 56 часов. Если они однотипные и относятся к подвиду старомодных монстров мощностью 3500 Вт, то в сумме они потребят 196 кВт. ч электроэнергии, или 700 мДж. Это и есть примерное количество тепла, которое хранит в себе небольшой дом. Сравните это количество с табл. 2, и вы увидите, что приблизительно это эквивалентно сжиганию 23 л бензина.
А нужно ли отапливать дом? Закон сохранения энергии указывает, что бо льшая часть пищи, которую мы потребляем, в итоге превращается в тепло, которое рассеивается в окружающем пространстве. Так что при наличии в доме достаточного числа людей вы могли бы поддерживать в нем тепло без нагревательных приборов. А сколько нужно для этого людей? Сидя за столом или прохаживаясь по помещению, вы излучаете 100–200 Вт тепла – столько же, сколько одна или две большие лампы накаливания[217]. Чтобы нагреть комнату так же, как один большой тепловой аккумулятор, понадобится, чтобы в ней сидело 35 человек (или 18 ходило туда-сюда, изнашивая ваши ковры). А чтобы заменить четыре тепловых аккумулятора, понадобилось бы 140 сидящих людей (или 70 слоняющихся по дому). Поэтому в больших концертных залах всегда необходимо мощное кондиционирование воздуха.
Охлаждаемся
Охлаждение дома может быть гораздо более сложным и хлопотным делом, чем отопление. В середине XIX века, когда еще не придумали холодильников и кондиционеров, обливающиеся летом от жары лондонцы вынуждены были рассчитывать только на импорт огромных глыб льда откуда-нибудь из Норвегии. Один известный предприниматель того времени Карло Гатти привозил в то время из Северного моря до 400 т льда за раз[218].
Почему охладить дом так тяжело? Теоретически отопление и охлаждение – противоположные процессы, так что охлаждение жилища не должно быть сложнее. Если у вас есть чашка прохладной воды температурой 10 °C и вы хотите нагреть ее на 90°, чтобы довести до кипения, вы должны сообщить ей некоторое количество энергии. Вы получите то же количество энергии за время, в течение которого вода будет остывать со 100 до 10°. Это первый закон термодинамики в действии – в двух направлениях. Но это не значит, что нагревание и охлаждение – обратимые зеркальные процессы. Вы не можете переключить электрический камин так, чтобы он забирал из комнаты тепло и охлаждал ее. Вы не можете собрать находящееся в комнате тепло и вернуть его в кусок угля, подготовив к повторному использованию назавтра. Почему же?
Тепловая энергия перетекает от нагретого предмета к холодному в результате трех процессов: теплопередачи, конвекции и теплового излучения. При теплопередаче молекулы более теплого предмета отдают тепло молекулам холодного в результате прямого контакта. Конвекция переносит тепло через завихрения и потоки газов и жидкостей. Например, когда вы нагреваете кастрюлю с супом, жидкость на дне согревается быстрее, становится менее густой, устремляется вверх, расталкивая холодные слои так, что они опускаются вниз и тоже нагреваются. Попеременное восхождение теплых потоков и нисхождение холодных циклически переносит тепловую энергию в кастрюльке. Тепловое излучение – невидимые лучи тепла, пронизывающие воздух или вакуум (вспомните инфракрасное излучение, см. главу 8). Это излучение (не имеющее отношения к опасной атомной радиации) заставляет ваши щеки краснеть, когда вы сидите у костра в лесу. Вы согреваетесь, хотя и не прикасаетесь к огню и вокруг вас нет заметной конвекции (потому что вы находитесь на открытом пространстве).
Когда вы включаете трехэлементный электрический камин в гостиной, три металлические трубки или пластины, разогретые докрасна, обеспечивают излучение тепла в комнату и нагревание всех предметов в ней. Постепенно эти предметы тоже становятся мини-источниками тепла, даря его другим объектам в процессе теплопередачи, конвекции и теплового излучения. Однако между нагреванием и охлаждением существует фундаментальная асимметричность, которая не позволяет этим процессам работать в обоих направлениях.
Представьте себе, что вы смогли изобрести для гостиной электрическое охлаждающее устройство, которое, как и камин, состоит из трех трубчатых или пластинчатых элементов, охлаждающихся до ледяного металлического блеска и забирающих тепло из комнаты. Но такая конструкция не будет работать. Во-первых, охлаждение не обратно нагреванию. Один горячий источник (огонь) может в результате теплоизлучения легко передать тепло более холодным объектам в комнате: второй закон термодинамики говорит нам о том, что тепло естественно распространяется и рассеивается в пространстве. Но те же теплые объекты (разогретые жарким летним воздухом) не могут передавать свое тепло более холодным и охладить себя сами. Во-вторых, даже если бы термоэлементы устройства могли впитывать в себя тепло от объектов в комнате, куда бы оно девалось? Таких накопителей не существует. Электрокамин превращает электричество в тепло, получая электроэнергию по проводам. Придать этому процессу обратное направление невозможно. Если вы положите большой кусок льда в электрокамин, он нагреется и растает, потребив энергию из окружающей среды. Но он не может забрать из комнаты всю энергию. Растаяв, он дальше использован быть уже не может. Примерно так же можно объяснить, почему вы не можете охладить кухню, открыв дверь холодильника: всё тепло, которое будет «всосано» внутрь через дверь, всё равно выйдет в виде того же тепла через заднюю панель аппарата.
Создается впечатление, что между отоплением и охлаждением дома есть фундаментальное различие, которое невозможно обойти. Почему же?
Охлаждение и отопление
Нагревание и охлаждение могут быть эквивалентны, но не являются двумя противоположными процессами. Нагрев делает внутреннюю структуру вещей более хаотичной, а охлаждение – наоборот, спокойной и упорядоченной. Нагревание усиливает естественную тенденцию Вселенной к хаосу; охлаждение противодействует ей, внося (пусть и искусственно) в природу больше порядка. Комнату легко отопить, позволив энергии распространяться по ней от электрического обогревателя или камина. Но если вы хотите охладить ее в жаркий день, придется действовать иначе.
Простейшее охлаждающее устройство, вентилятор, работает по принципу обдува воздухом нагретых предметов – они отдают свое тепло в результате конвекции или (в случае с живыми существами) испарения (обдувающий человека воздух испаряет выделяющийся на коже пот, одновременно забирая с тела излишнее тепло). Это зеркальное отражение того, как работает конвекционный обогреватель: принцип его действия заключается в направлении теплого воздуха на предметы и их согревание. Но надолго охладить комнату одним вентилятором трудно. Если в закрытом помещении вы включите вентилятор, то вы добьетесь только перемешивания слоев воздуха и их перемещения из одной части комнаты в другую.
Кондиционеры воздуха (обычно используемые в качестве аппаратов для охлаждения, хотя в принципе могут работать и на отопление) действуют иначе. Они «высасывают» теплый воздух из нагретого помещения и перемещают наружу. Они похожи на холодильники, потому что имеют систему трубок, по которым циркулирует охлаждающая жидкость (обычно легкое жидкое вещество, которое закипает при очень низкой температуре). Они также имеют нечто общее с вентиляторами, поскольку втягивают и выбрасывают воздух. Принцип работы кондиционеров таков: охлаждающая жидкость сначала нагревается в помещении (вбирая тепло окружающего воздуха), затем по специальной системе трубок выводится наружу, где отдает тепло и охлаждается, после чего возвращается охлажденной в помещение, и цикл начинается по новой[219]. Вам может показаться, что кондиционеры воздуха или холодильники нарушают второй закон термодинамики, поскольку постоянно перемещают воздух от холодного к горячему, как бы подтрунивая над законами физики. Но это происходит только за счет затрат электроэнергии, поддерживающей неестественный круговорот, который делает теплые предметы теплее, а холодные – холоднее, обеспечивая разницу температур, которая в естественных условиях (согласно второму закону термодинамики) сама собой исчезла бы.
Отопление или охлаждение воздуха и предметов требует времени. Посчитайте, сколько вам необходимо прибавить или изъять и какой объем можно переместить за секунду, – и вы получите время, нужное для этого процесса. Это соответствует второму закону термодинамики и относится ко всему, что вы хотите нагреть или охладить: от пышущего жаром дома летом до жидких ингредиентов мороженого, которые вы хотите заморозить. Приготовление мороженого дома требует около трех часов только для того, чтобы заморозить молочные составляющие. Конечно, в этом деле есть и свои хитрости. В 1890 году британский кулинар Агнесса Маршалл придумала ловкий способ приготовления мороженого с использованием жидкого азота, нормальная температура которого составляет –196 °C[220]. Почему работает этот способ? Главный ингредиент мороженого – молоко, которое в основном состоит из воды. В этой жидкости много молекул, которые необходимо охладить. В холодильнике уйдет много времени на то, чтобы эти молекулы потеряли энергию и образовали твердое вещество. В жидком азоте эту работу выполняют гораздо более холодные молекулы. Когда они движутся вокруг сосуда с будущим мороженым, они замораживают его значительно быстрее.
Спускаемся под землю
Если вы хотите прогреть дом морозной зимой, вряд ли вас вдохновит перспектива залезть в промерзшую землю. А вот в Скандинавии или Швейцарии люди активно пользуются насосами, которые выкачивают тепло из-под земли и направляют его на обогрев жилища. На первый взгляд это может показаться нарушением второго закона термодинамики, но это неверно. В нескольких метрах вглубь земли есть большие запасы тепла. Земля там намного теплее, чем зимний воздух на поверхности. С помощью небольшого количества электроэнергии возможно нагреть некоторый объем специальной теплопроводящей жидкости под землей, заставить ее отдать тепло в дом и снова направить ее под землю за теплом в очередном цикле.
Согласно первому закону термодинамики, количество теплоты, которое согревает ваш дом, эквивалентно количеству теплоты, поднятому из земли. Но если даже вы можете получить из-под земли эквивалент тепла, производимого четырьмя теплоаккумуляторами (14 кВт, или 14 000 Дж/с), вам ничего не придется платить за нее. Получается, подземные источники тепла работают с почти 100 %-ной эффективностью. Вам остается добавить (заплатив соответствующую сумму) небольшое количество электроэнергии, необходимой для работы насосов, обеспечивающих циркуляцию теплоносителя в цепи. Кажется, что эти системы берут энергию из воздуха (но мы-то знаем, что это невозможно). Они недешевы, но окупаются за 10–15 лет[221].
▲ Добыча тепла из земли. Специальные насосы закачивают теплоноситель в землю и возвращают обратно нагретую жидкость. В доме она проходит через специальный теплообменник. Тепло забирается и «забрасывается» в дом вентиляторами и воздуходувками. Теплоноситель охлаждается и становится готовым к очередному «путешествию» за теплом. Энергия, согревающая дом, идет из-под земли. Для работы насосов и воздуходувок нужно минимальное количество электроэнергии в сопоставлении с получаемым теплом. На первый взгляд это противоречит второму закону термодинамики: энергия движется от более холодного к более теплому предмету. На практике никакого противоречия нет: здесь есть небольшое внешнее воздействие в виде работы насосов и вентиляторов.
Трюки с теплом
Процесс приготовления пищи на первый взгляд кажется полной противоположностью отоплению и охлаждению жилищ (еду мы сначала замораживаем, а потом термически обрабатываем). Кроме охлаждения и заморозки продуктов, есть и другие способы их сохранения, например консервирование. Но пока супермаркеты ориентируются на холодильники покупателей: современные семьи предпочитают охлаждать продукты, чтобы сохранять их.
Количество энергии, которое тратится на охлаждение продуктов и их разогрев, конечно, велико. Но оно не идет ни в какое сравнение с тем, сколько мы тратим энергии на отопление и кондиционирование домов. Когда нам нужно сделать наши дома теплыми зимой и прохладными летом, мы проявляем смекалку и обращаемся к законам термодинамики. Наши уютные дома в любом случае будут охлаждаться зимой: второй закон термодинамики гласит, что энергия передается от теплых предметов к холодным. Но этот закон ничего не говорит о том, с какой скоростью могут идти эти процессы. А ее мы уже вполне можем контролировать. Согласно физическим законам, вы не можете остановить охлаждение теплых домов, но способны его замедлить настолько, насколько захотите. Здесь важнейшую роль играет теплоизоляция.
Северные овцебыки – одни из самых приспособленных к холоду животных на Земле. У них гораздо больше общего с хорошо утепленным домом, чем вам кажется.
▲ Куда уходит тепло из домов? Теплый воздух обычно поднимается вверх. Вы, наверное, думаете, что самое большое количество тепла в доме утекает через крышу. На самом деле три четверти его утекает через стены, пол, двери и окна. Если вы хотите, чтобы в холодное время года дом хранил тепло и уют, вы должны всеми способами предотвратить утечки тепла и проникновение в жилище холодного воздуха и сквозняков.
Свисающие с тела овцебыков большие пласты с виду неопрятной шерсти в восемь раз теплее шерсти овец. Шерсть хорошо защищает овцебыков от холода и объясняет, почему северные народы называют их oomingmak – «животными с бородами на коже». Но секрет жизнестойкости овцебыков состоит не только в хорошей теплозащите. Они сохраняют тепло еще и благодаря особенностям поведения: бо льшую часть времени они стоят неподвижно и тесно прижавшись друг к другу, как дома в поселке. Такое их состояние называют «стоячей спячкой». Оно замедляет обмен веществ, делая животных неподвластными холоду и сохраняя их силы.
Как задержать тепло
Если тепло ускользает из дома в процессах теплопередачи (прямого контакта), конвекции (движения воздушных масс) и теплового излучения (исходящие лучи энергии), его можно сохранить, замедлив все указанные процессы. Именно это происходит в вакуумном термосе. Ваш горячий или холодный напиток находится в колбе с двумя стенками, покрытыми теплоотражающим составом, с вакуумом между ними (в дешевых вариантах между двумя стенками находится теплоизолирующий материал или просто воздух). За исключением горла термоса и защелкивающейся пробки, других мест, где бы горячая жидкость внутри соприкасалась с холодным воздухом снаружи, нет. В термосе потери тепла в результате теплопереноса сведены к минимуму. Металлический корпус снижает теплопотери, возникающие в связи с излучением, а вакуум и внешнее пластиковое покрытие спасают от конвекции[222].
Теоретически теплоизоляция в домах способна так же эффективно сохранять тепло. Теплоизоляционные материалы на стенах, полах и чердаках обычно представляют собой различные виды полиуретана, асбестового волокна, вермикулита или пластмасс, в структуре которых есть значительное количество воздуха. Двухслойные оконные стекла не так популярны, как стеклопакеты, в которых между стеклами находится воздух, дающий теплоизолирующий эффект. Высокотехнологичные низкоэмиссионные стекла обычно покрываются тонкой пленкой на основе титановых сплавов, которые хорошо отражают солнечные лучи в жару и не выпускают прохладу из помещений. На внутренней поверхности окон такие составы задерживают тепло в помещениях зимой (внешняя и внутренняя металлические колбы в термосе работают так же).
Многие считают, что идеальным способом теплозащиты в их доме было бы двуслойное его покрытие стеклоподобным отражающим веществом на основе поливинилхлорида снаружи и утепление обрешетки крыши изнутри слоем из десятка сантиметров асбестового волокна. Но пока этот вариант труднодоступен. Лучшим в нынешних условиях способом теплоизоляции дома было бы обкладывание его стен снаружи тонким слоем сверхлегкого твердого вещества – аэрогеля[223]. Часто к его названию прибавляют «замороженный дым» из-за его внешнего вида. Аэрогели настолько эффективны в удержании тепла, что, по словам главного эксперта НАСА по этим веществам доктора Питера Цоу: «Если обычный дом с двумя-тремя спальнями теплоизолировать при помощи аэрогеля, то вы можете отапливать помещение всего одной свечой. Однако в конце концов в таком доме всё равно станет слишком жарко»[224]. К сожалению, хотя аэрогели в 10 раз эффективнее воздуха при теплоизоляции различных объектов, они намного более хрупкие, чем стекло. Поэтому, скорее всего, пройдет немало лет, прежде чем эти материалы получат широкое применение в строительстве. Пока же архитекторы делают ставку на менее амбициозную, но более практичную технологию сохранения тепла в домах, которая получила название Passivhaus Standard. Она была разработана в Германии в 1990-х и основана на методиках предотвращения утечек теплого воздуха из отапливаемых жилищ. Технология Passivhaus сокращает расходы на отопление в среднем в 5–10 раз. При ее применении счета за отопление типового семейного дома могут составлять около 38 долл. в год[225].
Звучит впечатляюще, но мы пока новички в том, что касается сохранения тепловой энергии. Достаточно посмотреть на северного овцебыка, чтобы убедиться, насколько умнее природа, чем мы, в борьбе за сохранение тепла. Огромные запасы минерального топлива вроде угля, газа и нефти сделали нас ленивыми и равнодушными, но растущая стоимость энергии (из-за неизбежного сокращения естественных запасов ее источников, роста населения планеты и возрастающего беспокойства по поводу изменений климата) заставит нас уже в ближайшее время всерьез задуматься о том, что мы могли бы сделать для более эффективного сохранения тепла и прохлады в жилищах.
Почему греются и требуют охлаждения компьютеры?
Компьютеры (во всяком случае их процессоры) не имеют движущихся частей. Это не заводские станки и не реактивные двигатели, не тормоза велосипедов и не электрические дрели. Люди могут гадать, как они генерируют тепло, но стоить вам положить руку рядом с перфорированным выходом, через который «охлаждающий» вентилятор (кулер) гонит воздух из компьютера, как вы сразу почувствуете тепло. Поместите ноутбук на колени, и через несколько минут вы почувствуете, будто их поджаривают в тостере. Если бы вы проверили внутреннюю температуру компьютера, то перестали бы этому удивляться. Два моих ноутбука имеют встроенные термометры, которые нередко показывают 90–100 °C. Ничего себе! А ведь единственной движущейся частью в ноутбуках является как раз вентилятор.
Звучит странно? Если компьютеры всего-навсего гоняют числа туда-сюда, то почему они так разогреваются? Ответ – в законах термодинамики. Электропитание ноутбука обычно осуществляется напряжением 20 вольт и силой тока 5 ампер. Следовательно, ежесекундно в него поступает около 100 Дж в виде электрической энергии (мощность электрического устройства – напряжение, умноженное на силу тока). Первый закон термодинамики гласит, что вся поступающая в компьютер энергия должна куда-то расходоваться. В случае с ноутбуком, за исключением той ее части, которая заставляет светиться экран и работать динамики, почти вся энергия превращается в тепло. Если почти 100 Дж энергии выходят из компьютера в виде тепла, то это достаточно много – столько же, сколько тепла дает удивительно неэффективная в смысле потребления электроэнергии 100-ваттная лампа накаливания. Именно поэтому компьютер нагревается, и именно поэтому вашим коленям становится жарко, если на них расположился ваш ноутбук.
Откуда берется это тепло? В большинстве своем – от столкновений электронов в цепях компьютера. Эти электроны ведут себя как люди на улице в часы пик. Энергия создается за счет сопротивления электрической цепи. Каждый ее сегмент работает как маленький элемент в лампе накаливания, нагревая небольшую поверхность. Современные компьютеры состоят из миллионов микроскопических деталей (транзисторов), размещенных на небольших интегральных схемах размером с марку. Тепловой энергии нелегко покинуть это запутанное пространство[226].
Компьютеры грелись всегда и будут греться. Классическая вычислительная машина Harvard Mark I, частично электрическая, частично механическая, созданная в 1940-х, имела 800 км проводов, каждый сантиметр которых генерировал тепловую энергию. Как мы видели в главе 12, гораздо более сложная ЭВМ ENIAC, первый настоящий электронный компьютер, потреблял столько же электроэнергии, как 60 тостеров. Знаменитый стационарный суперкомпьютер Cray-1[227], созданный на рубеже 1980-х, имел такую плотную схему компоновки, что нуждался в собственном «холодильнике», с помощью которого специальная охлаждающая жидкость (Fluorinert) обращалась по замкнутому контуру внутри корпуса, предотвращая перегрев.
Блогеры любят нахваливать современные компьютеры, утверждая, что те экологически чистые и малоэнергоемкие. iPhonе и планшеты потребляют очень мало электроэнергии и состоят из значительно меньшего числа деталей[228]. Но это не вся правда. Во-первых, компьютерных устройств разных типов сейчас намного больше, чем раньше. Когда-то существовал только ENIAC, а сейчас только корпорация Apple уже выпустила более полумиллиарда штук только iPhone[229]. Во-вторых, мобильные электронные устройства сейчас в основном работают на принципе «облачных вычислений» (ваши данные хранятся и обрабатываются в гигантских серверных центрах, которые расположены по всему миру) и поддерживаются гигантскими поисковыми системами вроде Amazon, Apple, Facebook, Google, IBM и Yahoo!. Согласно исследованиям организации «Гринпис», энергопотребление системы «облачных вычислений» в период с 2005 до 2010 года возросло на 58 %. Если бы эта система была страной, она заняла бы пятое место в мире по потреблению электроэнергии. Некоторые компании, работающие в этой системе, и заявили о своей приверженности использованию возобновляемых источников энергии, но половина из них по-прежнему получают ее от сжигания угля, самого грязного топлива на планете[230].
Несомненно, сегодняшние компьютеры лучше, чем вчерашние, и они с каждым днем становятся всё совершеннее. Переход от старомодного настольного компьютера к современному ноутбуку сокращает расходы энергии на 50–80 %[231]. Однако нам не с чем себя поздравлять. Мы не можем отменить действие первого закона термодинамики: энергия должна откуда-то появляться. Если сейчас всё больше людей используют всё больше компьютеров, чтобы достигать всё бо льших результатов, то когда-нибудь, где-нибудь и кому-нибудь придется заплатить за это соответствующую цену.
Глава 14. Километры еды
Из этой главы вы узнаете…
Сколько нужно «поклевать» сыра, чтобы сыграть партию в гольф.
Сможете ли вы пойти на работу, съев только одно яйцо.
Почему не занятый человек растрачивает больше энергии, чем электрическая лампочка.
Если верна старая поговорка: «Вы – то, что вы едите», как же получается, что мы не являем собой ходячие мешки с бургерами и картошкой фри? Ответ очевиден любому, у кого есть бурчащий и урчащий живот. Наши тела – комбинаты питания, но работающие в обратном направлении: превращающие пищу в нас с помощью сложного многоступенчатого процесса, который называется метаболизмом . Этот термин звучит как нечто из области биологии или химии (или, если хотите, биохимии), но, как и всё во Вселенной, он управляется законами физики. И здесь прослеживаются незыблемые причинно-следственные связи с законом сохранения энергии (а именно первым законом термодинамики). Эти связи можно проследить очень предметно и увидеть, как банан и шоколадный напиток, которые вы жадно проглотили во время обеда, превращается в полтора часа игры в теннис, несколько десятков электронных писем, а также множество мыслей и снов.
Мы воспринимаем питание с точки зрения здоровья (это тоже биология), но наше пищеварение – все же главным образом физика. То, что вы загружаете в свой рот и желудок, определяет то, что вы сможете, а чего не сможете сделать в последующие часы, дни и даже недели. Это неочевидно, но происходит потому, что даже самые худые из нас имеют существенные запасы жира, который может покрывать неожиданные перебои с поступлением питательных веществ в организм. Если вы набираете вес, то не потому, что вы слишком много съели (а сколько это – «слишком много»?), а потому что ваше тело израсходовало меньше энергии, чем потребило. Согласно законам физики, с любым избытком энергии нужно что-то делать.
Наша суть определяется не только тем, что мы едим, но и как мы это делаем. Как считают многие ученые, именно способность готовить, то есть обрабатывать естественную пищу, сыграла решающую роль в эволюции человека в существо с большим развитым мозгом и способностью мыслить. Процесс приготовления еды позволил сделать ее более питательной и богатой энергией, чем сырье для нее. Он сам прошел большой путь – от жарки доисторических буйволов на костре до быстрого разогрева готовых блюд в микроволновке на офисной кухне. Известные кулинары-экспериментаторы, например Хестон Блюменталь[232], показывают нам, что в кулинарии столько же науки, как и в процессе переваривания пищи человеком и превращения ее в запасы энергии в организме.
Пища и топливо
Люди нуждаются в пище так же, как автомобили в топливе, хотя, возможно, это и не самое точное сравнение. Машины не растут и не лечат себя сами, не потребляют энергию, когда стоят в гараже, и не набирают вес, если вы каждый раз заливаете полный бак. Пища и топливо производятся Солнцем, но в рамках принципиально разных процессов. Бензин или дизельное топливо, которые вы заливаете в бак автомашины – жидкие углеводороды, – создаются в течение порядка 200 млн лет и в результате сложных геологических процессов из остатков доисторических растений и морских животных. А помидор, который вы с удовольствием отправляете в рот, вызревал всего несколько недель . Несколько недель назад та энергия, которую он содержит (порядка 35 ккал/150 кДж), находилась в 150 млн км от Земли, на Солнце[233]. Хотя ваш бензин рожден тем же источником, он не видел солнечного света со времен, когда динозавры топтали Землю.
Другое очевидное различие между пищей и топливом заключается в том, что они обладают двумя разными видами накопленной в них потенциальной (химической) энергии и что мы применяем принципиально разные способы, чтобы превратить эту энергию в механическую. Автомашины в буквальном смысле «сжигают» энергию в прочных жаростойких «горшках», которые называются цилиндрами. Бензин превращается в механическую энергию, приводящую в движение колеса, благодаря процессу сгорания (взрыва) , который происходит при взаимодействии углерода с кислородом. Но, хотя мы говорим о «сжигании» калорий, в нашем организме в буквальном смысле такого процесса не происходит. Когда мы потребляем еду, то запускаем сложный химический процесс ее превращения в глюкозу. Наши желудок и печень трансформируют пищу в сахар, который мы можем использовать быстро, или жир, который можно сохранять и использовать по мере необходимости. Именно поэтому нам не нужно всю жизнь щипать траву. Многие используют слово «респирация» как синоним дыхания, но на самом деле оно означает превращение запасов нашей «телесной энергии» в другие ее виды с использованием кислорода, содержащегося в воздухе. Это примерно то же самое, как если бы процесс фотосинтеза (превращения солнечного света в биохимическую энергию) шел в обратном порядке; и похоже на процесс сгорания в цилиндрах вашего автомобиля.
Благодаря способности тела накапливать запасы энергии, содержащейся в пище, на недели вперед нет прямой связи между тем, что вы только что съели, и тем, что вы можете сделать. Запасы питательных веществ в теле не заканчиваются так же внезапно, как бензин в баке автомобиля или завод у пружины часов. Законы физики подсказывают нам, что машина не может использовать больше энергии, чем есть в том бензине, который вы в нее залили (хотя, конечно, возникают и внешние дополнительные обстоятельства вроде движения под уклон или по ветру). А энергетическое содержимое пищи, которую вы потребляете, определяет пределы того, сколько и чего вы можете сделать и в течение какого времени выживать. Вы можете считать калории, борясь с лишним весом. Но и они тоже ведут свой счет в отношении вас: устанавливают пределы того, что вы способны сделать.
▲ Как тело расходует энергию. Хотя мозг составляет лишь 2 % от веса тела, он использует почти пятую часть всей энергии. Печени требуется еще больше. Эти цифры характеризуют энергетические затраты организма в состоянии покоя. Во время усиленных физических нагрузок до 90 % энергии уходит на работу мышц [234].
Считаем калории
Никто из нас не любит подгорелую пищу. Но есть место, где она воспринимается как приемлемая. Указатели содержания калорий в продуктах, которые мы видим на пакетах в магазинах, рассчитываются при сжигании минимальных объемов соответствующих пищевых изделий в мини-печках, называемых калориметрами. Классический калориметр носит название жидкостный калориметр-интегратор (бомбовый калориметр) . Он состоит из сосуда с жидкостью (обычно водой), внутри которого есть небольшая металлическая камера сгорания, где сжигают пищевые продукты, за счет чего нагревается окружающая водяная оболочка. По определению, одна килокалория – это столько энергии, сколько нужно для подогрева одного литра воды на один градус Цельсия. Зная объем воды и измерив изменение ее температуры, мы можем вычислить, какое количество энергии содержал продукт, сожженный в камере сгорания (практически вся она будет поглощена водой).
Большинству трудно зрительно представить себе энергию, заключенную в пище. Причин тому три. Во-первых, на первый взгляд практически невозможно определить содержание энергии в том или ином продукте питания. В чем ее больше – в бигмаке или пяти бананах? Кстати, энергии в них примерно поровну. Во-вторых, как мы уже видели в главе 2, многие плохо представляют себе, сколько энергии нужно, чтобы подняться по лестнице или сыграть партию в теннис. Поэтому мы не знаем, сколько энергии нам на самом деле нужно. Вместо достаточно точного прибора – топливного манометра, – показывающего нам количество оставшегося бензина в баке машины, в отношении себя мы должны пользоваться очень грубыми и приблизительными показателями – голодом или, наоборот, пресыщением. В-третьих, знакомые нам единицы, которые мы используем для оценки энергетического содержания продуктов, – калории – часто нас запутывают. 1 американская калория на самом деле эквивалентна 1000 калорий или 1 килокалории (научная, строгая мера измерения), которая равноценна 4200 Дж, или 4,2 кДж энергии.
Что наполняет нас энергией
Есть еще од