Выведите формулы для расчета по образованию трещин изгибаемого элемента

Какие требования предъявляют к трещиностойкости железобетонной конструкции и как они делятся по категориям? Охарактеризуйте категории трещиностойкости.

СНиП ЖБК п. 1.16

Расчет по предельным состояниям второй группы должен обеспечивать конструкции от:

- образования трещин, а также их чрезмерного или продолжительного раскрытия (если по условиям эксплуатации образование или продолжительное раскрытие трещин недопустимо);

К трещиностойкости конструкций (или их частей) предъявляются требования соответствую­щих категорий в зависимости от условий, в кото­рых они работают, и от вида применяемой арматуры:

а) 1-я категория — не допускается образование трещин (конструкции, воспринимающие давление жидкости и газа, если все сечение растянуто, арматура преднапряжена);

б) 2-я категория — допускается ограниченное по ширине непродолжительное раскрытие трещин acrc1 при условии обеспечения их последующего надежного закрытия (зажатия) (конструкции, эксплуатируемые на открытом воздухе, в грунте ниже уровня грунтовых вод);

в) 3-я категория — допускается ограниченное по ширине непродолжительное acrc1 и продолжитель­ное acrc2 раскрытие трещин (конструкции, эксплуатируемые в закрытом помещении и другие при определенных видах арматуры).

Под непродолжительным раскрытием трещин по­нимается их раскрытие при совместном действии постоянных, длительных и кратковременных нагру­зок, а под продолжительным - только постоянных и длительных нагрузок.

Для второй группы предельных состояний нагрузки принимаются с коэффициентом γf=1,0 (за исключением конструкций 1 категории трещиностойкости).

В чем состоит цель расчета по образованию и раскрытию трещин?

СНиП ЖБК п. 4.хх, 5.хх

Сущность расчета по раскрытию трещин, нормальных и наклонных к продольной оси заключается в определении ширины раскрытия трещин на уровне растянутой арматуры acrc и сравнение ее с предельно допустимой шириной раскрытия трещин.

Расчет по образованию трещин центрально-растянутых элементов заключается в проверке условия, что трещины в сечениях, нормальных к продольной оси, не образуются, если продольная сила N от действия внешней нагрузки не превосходит внутреннего предельного усилия в сечении перед образованием трещин Ncrc, т.е. N<=Ncrc.

Расчет по образованию трещин изгибаемых, внецентренно-сжатых и внецентренно растянутых элементов заключается в проверке условия, что трещины в сечениях, нормальных к продольной оси элемента, не образуются если момент внешних сил M не превосходит момента внутренних усилий в сечении перед образованием трещин Mcrc.

3. Каковы основные предпосылки, принимаемые в расчете по образованию трещин? Как фор­мулируется исходные положения расчета по образованию трещин при центральном растя­жении, при изгибе

СНиП ЖБК

4.2. Для изгибаемых, растянутых и внецентренно сжатых железобетонных элементов усилия, воспри­нимаемые нормальными к продольной оси сечения­ми при образовании трещин, определяются исходя из следующих положений:

· сечения после деформации остаются плоскими;

· наибольшее относительное удлинение крайнего растянутого волокна бетона равно 2 Rbt,ser/Eb;

· напряжения в бетоне сжатой зоны (если она име­ется) определяются с учетом упругих или неупру­гих деформаций бетона, при этом наличие неупругих деформаций учитывается уменьшением ядро­вого расстояния r (см. п. 4.5);

· напряжения в бетоне растянутой зоны распределены равномерно и равны по величине Rbt,ser;

· напряжения в ненапрягаемой арматуре равны ал­гебраической сумме напряжений, отвечающих приращению деформаций окружающего бетона, и нап­ряжений, вызванных усадкой и ползучестью бетона;

· напряжения в напрягаемой арматуре равны ал­гебраической сумме ее предварительного напряже­ния (с учетом всех потерь) и напряжения, отвечаю­щего приращению деформаций окружающего бетона.

Расчет трещинообразования центрально растянутых элементов. Чему равно внутреннее усилие перед образованием трещин центрально-растянутого элемента?

СНиП ЖБК 4.хх – если ничего не знаешь, пишешь отсюда.

Лекция.

Расчет по образованию трещин центрально растянутого элементов сводится к проверке условия:

- в элементах без преднапряжения

N≤Ncrc=Rbt,ser*AbsAs=Rbt,ser(Ab+2αAs)

σssEs = εbtuEs=(Rbt,ser*Es/(VtEb)=2α Rbt,ser

εbtu – предельная растяжимость бетона; εbtu=Rbt/E’bt (модуль упругопластичности бетона)= Rbt/Et*vt (коэффициент упругопластических деформаций)

- в преднапряженных элементах

N≤Ncrc=Rbt,ser*AbsAs=Rbt,ser(Ab+2α(As+ Asp)+Р

Где Р – усилие предварительного обжатия, определяемого для стадии эксплуатации с учетом всех потерь

Р= σsрAsрsAs

Внутреннее усилие перед образованием трещин центрально растянутого элемента равно N=Ncrc

Выведите формулы для расчета по образованию трещин изгибаемого элемента.

Расчет по образованию трещин изгибаемых элементов по методу ядровых точек сводится к проверке условия

M≤Mcrc

М – момент внешних сил относительно оси, нормальной к плоскости изгиба и проходящей через ядровую точку наиболее удаленную от зоны, трещиностойкость, которой проверяем.

В преднапряженных изгибаемых элементах образованию трещин препятствует сила обжатия, создавая в нижней зоне сжимающее напряжение σbp (эпюра напряжений обжатия – трапеция с большим основанием у преднапряженной арматуры).

σbp=P/Ared+P*e0p/Wred

где Wred – упругий момент сопротивления сечения

Wred=Ired/y0

Ired – момент инерции приведенного сечения относительно оси, проходящей через центр его тяжести.

y0 – расстояние от центра тяжести сечения до грани, трещиностойкость которой определяется.

Ared – приведенная площадь поперечного сечения

e0p – расстояние от равнодействующей усилий в продольной арматуре до центра тяжести сечения.

Изгибающий момент Мcrc можно представить состоящим из 2 слагаемых – момента М1, уменьшающего напряжения обжатия крайнего волокна бетона от σbp до 0 и момента М2, вызывающего повышение напряжения в том же сечении от 0 до Rbt,ser.

М1 = Wred * σbp = Wred *(P/Ared+Pe0p/Wred)=P(Wred/Ared+e0p)=P(r+e0p)

r= Wred/Ared – расстояние от центра тяжести приведенного сечения до ядровой точки, наиболее удаленной от зоны, трещиностойкость которой проверяем.

При определении М2 принимаем эпюру нормальных напряжений в сжатой зоне элемента треугольной, а в растянутой прямоугольной с напряжением равным Rbt,ser

M2 = Wp1*Rbt,ser

Где Wp1 – упруго пластический момент сопротивления железобетонного сечения растянутой зоны Wp1=Wred*φ, где φ – коэффициент, учитывающий влияние неупругих деформаций бетона в растянутой зоны.

Выразим Р*( r+e0p)=Mrp получим

M≤Mcrc=M1+M2=Wp1Rbt,ser+Mrp

Выведите формулы для расчета по образованию трещин изгибаемого элемента - student2.ru

6. Каковы основные положения расчета момента образования трещин при упругой работе бе­тона сжатой зоны элементов? Каковы основные положения расчета момента образования трещин при неупругой работе бетона сжатой зоны элементов?

СНиП п. 4.5 про упругую, п. 4.7. про неупругую – можно списать оттуда.

Перед образованием трещин при двузначной эпюре напряжений в сечениях изгибаемых, внецентренно сжатых, внецентренно растянутых элементов характерно одно и то же напряженно-деформированное состояние – стадия 1.

В расчетах будем исходить из следующих положений: 1) сечения при изгибе остаются плоскими; 2) в бетоне растянутой зоны развиваются неупругие деформации и коэффициент, эпюра нормальных напряжений прямоугольная; 3) в бетоне сжатой зоны деформации только упругие и коэффициент, эпюра нормальных напряжений треугольная.
Бетон сжатой зоны работает упруго, если уровень напряжений k=σb/Rb,ser<0,7.

Предельное значение k зависит от вида бетона, эксцентриситета продольной сжимающей силы, длительности действия нагрузки и некоторых других факторов.

Момент внутренних усилий определяется по формуле

M­­crc= Rbt,serWpl±Mrp

Где Wpl – упругопластический момент сопротивления предварительно напряженного сечения в растянутой зоне

здесь Мrp — момент усилия Р относительно той же оси, что и для определения Мr; знак момента определяется направлением вращения („плюс" — когда направле­ния вращения моментов Mrp и Мr противоположны; „минус" — когда направления совпадают).

Усилие Р рассматривают:

для предварительно напряженных элементов — как внешнюю сжимающую силу;

для элементов, выполняемых без предваритель­ного напряжения, — как внешнюю растягивающую силу, определяемую по формуле (8), принимая на­пряжения ss и s’s в ненапрягаемой арматуре численно равными значениям потерь от усадки бетона по поз. 8 табл. 5 (как для арматуры, натягиваемой на упоры).

В некоторых предварительно напряженных элементах перед образованием трезин вследствие высокого уровня напряжений в бетоне сжатой зоны развиваются деформации нелинейной ползучести. Поскольку сечения остаются плоскими, возникают связи, препятствующие свободному развитию неравномерных по высоте сечения неупругих деформаций, стесненная ползучесть сопровождается релаксацией напряжений, эпюра нормальных напряжений искривляется. Момент трещинообразования снижается. Принимают условеи что бетон сжатой зоны работает неупруго если напряжеия вычисленные при треугольной эпюре составляют σb/Rb,ser>0,7. В этом случае криволинейную эпюру нормальных напряжений заменяют прямоугольной эпюрой напряжений в обеих зонах сечения, в которых коэффициент упругопластических деформаций:

Vt=vbt=0,5.

M­­crc= Rbt,serWpl±Mrp

Внимание. Формулы есть в СНипе п.4.7

Wpl=Sb0+ 2(Ibo+αIs0+αI’s0)/(h-x)

S’b0+αS’s0-αS0=(h-x)Abt/2

Наши рекомендации