Пересечение призмы с плоскостью

При построении линии пересечения призмы с плоскостью определяют точки пересечения ее ребер с данной плоскостью. Эту линию можно также построить, определяя линии пересечения отдельных граней призмы с плоскостью. В результате пересечения поверхности призмы плоскостью может быть получен прямоугольник (рис.6.2а ), если эта плоскость параллельна боковым рёбрам призмы, или различного вида многугольники (рис.6.2 б,в.), если плоскость не па параллельна им

 
  Пересечение призмы с плоскостью - student2.ru

На рис 6.3 показано построение проекций линии сечения

треугольной призмы фронтально-проецирующей плоскостью a

В сечении получен четырёхугольник ABCD, фронтальная проекция которого совпадает с фронтальной проекцией av секущей плоскости. Точки А,В являются точками пересечения боковых рёбер призмы с плоскостью a, а отрезок CD - линия пересечения верхнего основания призмы с этой плоскостью.

Натуральный вид сечения Ао Во Со Do построен способом замены плоскостей проекций, для этого введена новая плоскость проекций,

 
  Пересечение призмы с плоскостью - student2.ru

Пересечение призмы с плоскостью - student2.ru

параллельная плоскости о, и на эту плоскость спроецированы точкиA,B,C,D. Из проекций А², В", С² D² проведены линии связи, перпендикулярные к следу av, и на свободном поле чертежа проведена линия Ао Do, параллельная av. Эта линия принята за базу отсчёта размеров у на фигуре сечения потому, что прямая AD принадлежит фронтальной плоскости задней грани призмы, которую принимают за базовую. Точки Во и Со построены с помощью размеров ув и ус.

Пересечение цилиндра с плоскостью

При пересечении цилиндра плоскостью фигура сечения будет зависеть от угла наклона плоскости по отношению к оси вращения.

Если секущая плоскость параллельна оси вращения (рис 6.4 а ), в сечении цилиндра получится прямоугольник. Если плоскость перпендикулярна оси вращения (рис 6.4 , б), в сечении получится окружность.

Когда секущая плоскость расположена под углом к оси вращения цилиндра, в сечении получается эллипс (рис 6.4 в) или его часть ( рис 6.4', г).

Пересечение призмы с плоскостью - student2.ru

Рис 6.4

На рис 6.5 показано построение проекций линиисечения цилиндра фронтально - проецирующей плоскостью a (av).

Линией пересечения является эллипс. Большая ось эллипса - АВ = А' 'В'/, малая ось CD = С¢D¢ - диаметр цилиндра.

Ось цилиндра и вся цилиндрическая поверхность перпендикулярны плоскости Н. Следовательно, все точки цилиндрической поверхности, в том числе и линия пересечения ее с плоскостью а(а ) проецируется на плоскость Н в окружность, на ней отмечают горизонтальные проекции точек А¢,1¢, С¢, 2¢, В', D', 2', 1' эллипса, расположив их равномерно по окружности. В проекционной связи строят фронтальные проекции А², \", С², В², 2//, В² на фронтальном следе av секущей плоскости.

Профильные проекции точек строят по их горизонтальной и фронтальной проекциям на линиях связи. Профильная проекция линии пересечения цилиндра с секущей плоскостью - эллипс, большая ось C²¢D²¢ которого в данном случае равна диаметру цилиндра , а малая ось А²¢В²¢ - профильная проекция отрезка АВ. Натуральный вид сечения построен способом замены плоскостей проекций на плоскости Т, перпендикулярной плоскости V. Большая ось эллипса - отрезок АоВо @ A2B2, малая - отрезок CoDo @ d. Эллипс может быть построен по его большой и малой осям.

Пересечение призмы с плоскостью - student2.ru

Пересечение призмы с плоскостью - student2.ru

Наши рекомендации