Разделение и осаждение металлов, получение конечных продуктов

Наиболее распространенные методы разделе­ния и выделения металлов и их соединений из растворов — осаждение (электролиз, це­ментация, перевод в нерастворимые соедине­ния, кристаллизация), сорбция, экстракция. Выбор наиболее рационального метода дол­жен производиться в каждом отдельном слу­чае с учетом ряда факторов, из которых первостепенное значение имеют состав по­ступающего на осаждение раствора и тре­бования, предъявляемые к чистоте конечной продукции. Например, в медной промышлен­ности применяют электролиз для переработки богатых растворов и цементацию меди — для осаждения меди при концентрации менее 15 г/л [20, 76].

Осаждение металлов производят электролизом, цементацией, восстановлением соединений до металла водородом, разложе­нием комплексных солей.

Электролиз используют для извлечения металлов из очищенных растворов после выщелачивания (электроосаждение) и для получения чистых металлов из черновых продуктов (электрорафинирование). Этот метод получил широкое применение в гидрометаллургии меди, цинка, кадмия и марганца.

При цементации вытеснение ионов одного металла из растворов его солей производя ионами другого металла, расположенного выше в ряду напряжений (более электроотрицательного). Медь цементируют железом; или чугунной стружкой, железным скрапом губчатым железом, обезоловяненными консервными банками; золото — цинковой стружкой, цинковой и алюминиевой пылью; кадмий — цинковой пылью, никель —

кобальтовым порошком. Цементацию металлов производят в различных. аппаратах периодического или непрерывного действия (конусах барабанах, желобах, чанах, ваннах, аппаратах кипящего слоя).

Кроме того, никель, кобальт и медь осаждают из аммиачных растворов восстановлением их до металла водородом под давлением 3,5—5 МПа.

Осаждение меди или никеля из аммиачных растворов производят также разложением образовавшихся при выщелачивании комп­лексных углеаммониевых солей этих металлов. Медь осаждается в виде черной окиси меди, а никель — в виде карбоната. В результате дистилляции получают газообразный амиак и углекислоту, которые улавливают и вновь используют в процессе.

Часто металлы осаждаются в виде нерастворимых соединений: гидроокисей, сульфидов, ксантогенатов, карбонатов, вольфраматов, молибдатов и др. При оптимальном рН среды можно практически полностью отделить молибден от вольфрама в виде сульфида из растворов, содержащих вольфрамат натрия тиосоединения молибдена. Большое распространение в гидрометаллургических процeccax получил гидролиз, при котором возможно селективное осаждение некоторых металлов в виде гидроокисей иди основных шей.

При кристаллизации значительная часть извлекаемого металла осаждается в результате упарки и охлаждения раствора или изменения рН среды. Таким образом выделяют из раствора сульфат натрия при хлорирующем обжиге пиритных огарков и сульфат марганца при сернокислотном выщелачивании марганцевых руд. В вольфрамовой и молибденовой промышленности кристаллизацию применяют для получения чистых вольфрамата и молибдата аммония, содержание вредных примесей в которых не должно превышать тысячных долей процента.

В некоторых случаях, особенно при получении полупроводниковых соединений редких металлов, требуется, чтобы суммарное содержание всех примесей не превышало 0,05—0,1%. Поэтому полученные соединения перечищают (растворяют или разлагают их, затем повторно осаждают, часто завершающей стадией осаждения является электролиз, кристаллизация или восстановление до металла водородом).

Сорбционные и экстракционные методы извлечения металлов из растворов для значительного повышения концентрации их и очистки от вредных приме­сей получили широкое распространение в тех­нологии урановых, золотосодержащих, воль­фрамовых, молибденовых, медных и редко-метальных руд [20, 46, 92].

В качестве сорбентов применяют иониты— вещества, способные к обмену ионами с окру­жающим раствором и практически не раство­римые в применяемых в гидрометаллургии растворителях. В зависимости от характера обмениваемых ионов эти вещества делят на катиониты и аниониты.

Наибольшее распространение получила сорбция осветленных растворов в колонках с неподвижным слоем ионита. Однако в урановой и золотодобывающей промышленности успешно внедрена сорбция металла ионитами из жидкой фазы пульпы — бесфильтрационная сорбция. Возможность применения та­кого способа определяется значительной раз­ницей в крупности ионита и выщелачиваемого материала, что позволяет отделить ионит пропусканием пульпы через сито с отвер­стиями соответствующего размера. При осу­ществлении такого варианта ионообменного процесса значительно упрощается и делается более экономичной технологическая схема вследствие исключения операций предвари­тельного фильтрования пульпы. Весьма эф­фективно совмещение йоннообменной сорб­ции с выщелачиванием из руды полезных компонентов (ионообменное выщелачивание), позволяющее значительно повысить технико-экономические показатели гидрометаллурги­ческого процесса.

Для последующей десорбции металлов из ионитов (элюирование) применяют растворы различных реагентов — нитрата аммоний или натрия, хлористого натрия, аммиака, едкого натра, углекислого натрия, минеральных кис­лот и др.

Во многих случаях сорбция металлов ха­рактеризуется высокими технологическими показателями. Так, емкость анионита по урану составляет 30—50 кг/м3 смолы в на­бухшем состоянии, извлечение металла из раствора достигает 98—99,8 %, На 1 м3 загруженной смолы сорбируется 12—23 кг урана в сутки. Еще более высокая емкость получена по вольфраму и молибдену — до 160 кг/м3 анионита.

Продолжительность использования ионо­обменных сорбентов во многих случаях опре­деляется постепенным снижением их емкости вследствие частичного «отравления» ионитов, образования инертных пленок и разрушения обменных групп. Кроме того, неизбежны механические потери ионитов. Например, после двух лет работы опытной установки, на которой уран извлекался непосредственно из пульпы, общие потери ионита вследствие истирания составили 23 %, а емкость умень­шилась на 10 %. Скорость поглощения и элюирования осталась прежней.

В качестве сорбента применяют также активированный уголь, главным образом для сорбции золота и серебра из цианистых растворов.

Очистка растворов от мышьяка и сурьмы, коллоидальной серы и некоторых других вредных примесей осуществляется сорбцией их гидратом окиси железа.

Все большее значение в гидрометаллургии приобретают экстракционные процессы, при которых водный раствор солей металлов вступает в контакт с несмешивающейся с во­дой органической жидкостью, извлекающей определенные металлы из исходного раствора в виде комплексных соединений. Эффектив­ность экстракционного процесса количест­венно характеризуется коэффициентом рас­пределения извлекаемого металла

а = Y/X,

где Y — концентрация металла в органиче­ской фазе; X — то же, в водной фазе.

Практически процесс экстракции может быть реализован при коэффициенте распре­деления металла не менее 0,3—0,5. Высокое извлечение или практически полное разделе­ние металлов достигается при условии противоточного осуществления процесса, когда операция экстракции повторяется много­кратно.

В ряде случаев при экстракции достигается высокая селекция металлов из растворов, позволяющая осуществить разделение весьма близких по химическим свойствам элементов.

В качестве экстрагентов используют амины, кетоны, карбоновые кислоты, спирты, эфиры, фосфорсодержащие соединения.. В качестве растворителей экстрагентов (разбавителей) применяют углеводороды и их хлорпроизводные.

После отделения органической фазы от водной производится реэкстракцкя металла обработкой органической фазы щелочным или кислым раствором, а иногда только водой. В реэкстракте можно получить концентра­цию извлекаемых элементов во много раз выше, чем в исходном растворе.

Экстракцию широко применяют в урановой промышленности. В настоящее время значи­тельные успехи по экстракции достигнуты также в технологии извлечения и очистки многих редких и некоторых цветных метал­лов — меди, никеля, кобальта, тантала, нио­бия, вольфрама, молибдена, рения, индия, германия, гафния и др.

В промышленности для экстракции при­меняют смесители, отстойники, колонны с насадкой, тарельчатые колонны с пульса­цией, центробежные экстракторы и т. д.

Наши рекомендации