Генератор импульсных токов
Генератор импульсных токов (ГИТ) предназначен для первичного преобразования электрической энергии. Включает электрическую сеть переменного тока частотой 50 Гц, высоковольтный трансформатор, выпрямитель, токоограничивающее устройство, аппаратуру защиты. В ГИТе выделяют зарядный и разрядный контуры, которые связаны между собой батареей конденсаторов. ГИТ, являющийся источником питания, связан с технологическим блоком через разрядный контур.
Импульсные генераторы характеризуются следующими основными параметрами: напряжением на батарее конденсаторов U, электрической емкостью батареи С, накопленной в конденсаторах энергией Wн, энергией в импульсе W0 частотой следования импульсов υ.
Назначение зарядного контура — заряжание батареи конденсаторов до заданного напряжения. Контур включает токоограничивающее устройство, повышающий трансформаторе и высоковольтный выпрямитель. Для выпрямления зарядного тока применяют селеновые или кремниевые столбы. Высоковольтным трансформатором исходное напряжение питающей сети 380/220 В повышается до (2-70) 103 В.
В схеме L - С – D имеем ή3 > 50 %.
При применении генераторов импульсных токов значительны потери энергии на стадии формирования разряда. Этого недостатка лишена распространенная система, в которой сочетаются генераторы импульсных токов и напряжения (рис. 30). В этой системе пробой формирующего промежутка производится за счет энергии конденсаторной батареи генератора напряжения, что создает токопроводящий канал в основном рабочем промежутке и обеспечивает выделение основной энергии разряда в разрядном промежутке генератора импульсных токов.
Характерное для такой системы соотношение электрических напряжений и емкостей составляет: » при где индекс 1 соответствует генератору напряжений, а индекс 2 — генератору токов. Так, к примеру
Энергетические и массогабаритные показатели генератора существенно зависят от высоковольтного трансформатора и выпрямителя. Коэффициент полезного действия зарядно-выпрямительного устройства повышается при применении высоковольтных кремниевых столбов. Выпрямители имеют высокие характеристические показатели — удельный
объем от 0,03 до 0,28 м3/кВт и удельную массу 25—151 кг/кВт.
В электроимпульсных установках применяются также единые блоки, включающие трансформатор и выпрямитель, что уменьшает основные размеры и упрощает коммутационную сеть.
Импульсные конденсаторы предназначены для накопления электрической энергии. Высоковольтные импульсные конденсаторы должны обладать повышенной удельной энергоемкостью, малой внутренней индуктивностью и малым сопротивлением при больших токах разряда, способностью выдерживать многократные циклы заряд-разряд. Основные технические данные импульсных конденсаторов приведены ниже.
Напряжение (номинальное), кВ ...................................5-50
Емкость (номинальная), мкФ . . ...................................0,5-800
Частота разряда, число импульсов/мин.......................1-780
Ток разряда, кА...............................................................0,5-300
Энергоемкость, Дж/кг....................................................4,3-30
Ресурс, число импульсов...............................................10э - 3 • 107
Одной из основных характеристик импульсных конденсаторов, влияющей на размеры батареи и электроимпульсной установки в целом, является показатель удельной объемной энергоемкости
(3.23)
где Ен — накапливаемая энергия; Vк — объем конденсатора.
Для существующих конденсаторов ωс = 20 -г 70 кДж/м3, что определяет повышенные размеры накопителей. Так объем батареи для Ен = 100 кДж составляет 1,5—5,0 м3. В накопителях установок конденсаторы соединяют в батареи, что обеспечивает суммирование их электрической емкости, которая равна 100—8000 мкФ.
Высоковольтные коммутаторы применяются для мгновенного выделения в технологическом узле электрической энергии, накопленной в батарее конденсаторов. Высоковольтные коммутаторы (разрядники)' выполняют две функции: отключают разрядную цепь
от накопителя при его заряжании; мгновенно включают накопитель в цепь нагрузки.
Возможны различные конструктивные схемы разрядников и соответствующие этим схемам типы коммутаторов: воздушные, вакуумные, газонаполненные, контактные тарельчатые, игнитронные и тригатронные, с твердым диэлектриком.
Основные требования к коммутаторам следующие — выдерживать высоковольтное рабочее напряжение без пробоя, иметь малую индуктивность и малое сопротивление, обеспечивать заданную частоту следования импульса тока.
В лабораторных электроимпульсных установках применяются преимущественно разрядники воздушного типа, обеспечивающие коммутацию больших энергий при длительном сроке эксплуатации и имеющие сравнительно простую конструктивную схему (рис. 31).
Разрядники этого типа имеют ряд существенных недостатков, ограничивающих их применение: влияние состояния поверхности и состояния атмосферного воздуха (запыленности, влажности, давления) на стабильность воспроизводимого импульса; образуются оксиды азота, оказывающие воздействие на человека; образуется мощное высокочастотное звуковое давление.
В промышленных передвижных установках распространение получили механические тарельчатые коммутаторы (см. рис. 31, а). Разрядники этого типа просты по электрической схеме и конструктивному исполнению, надежны при транспортировке и работе на участках с пересеченным рельефом, но требуют регулярной очистки поверхности тарельчатых элементов. I
В состав электроимпульсной установки входят также блоки управления импульсным генератором и технологическим процессом, системы защиты и блокировок, вспомогательные системы, обеспечивающие механизацию и автоматизацию процессов в технологическом узле.
Блок управления включает электрические схемы запуска, блокировки и схему формирования импульса синхронизации.
Система блокировки служит для «мгновенного отключения высоковольтного напряжения. Система контроля состоит из вольтметра и киповольтметра, указывающих соответственно напряжение сети и на батарее конденсаторов, из индикаторных ламп, звуковых сигналов, а также частотомера.
Технологический узел
Технологический узел предназначен для преобразования электрической энергии в другие виды энергии и для передачи преобразованной энергии на объект обработки.
Применительно к специфике разрядно-импульсной технологии разрушения горных пород технологический узел включает: рабочую разрядную камеру, рабочий орган в виде электродной системы или электрогидравлического взрывателя, устройство для впуска и выпуска рабочей жидкости и устройство перемещения электродов или взрывающегося проводника (рис. 32). Рабочая разрядная камера заполняется рабочей жидкостью или специальным диэлектрическим составом.
Разрядные (рабочие) камеры делят на открытые и закрытые, заглубленные и поверхностные, стационарные, перемешающиеся и выносные. Камеры могут быть одноразовые и многоразовые; вертикальные, горизонтальные и наклонные. Тип и форма рабочей камеры должны обеспечивать максимальное выделение накопленной электрической энергии, максимальный к л.д. преобразования этой энергии в механическую, передачу этой энергии на объект обработки или в заданную его зону.
Рабочий технологический орган предназначен для непосредственного преобразования электрической энергии в механическую и для ввода этой энергии в рабочую среду, а через нее — на объект обработки. Тип рабочего органа зависит от используемой в данном технологическом процессе разновидности электрического разряда в жидкости — при свободном формировании разряда рациональны электродные системы (рис. 33, а); при инициируемом разряде — электрогидравлический взрыватель с взрывающимся проводником (рис. 33,6).
Рабочий орган испытывает динамические нагрузки, действие электромагнитного поля и ультрафиолетовых излучений, а также влияние рабочей жидкости.
Электродная система применяется при свободном формировании разряда. По конструктивному фактору выделяют стержневые линейные и коаксиальные системы. Наиболее просты по исполнению линейные (противостоящие или параллельные) системы с сочетаниями форм электродов острие — острие и острие — плоскость. Недостатками линейных систем являются их значительная индуктивность (1—10 мкГн) и ненаправленность действия.
Более совершенны коаксиальные системы, имеющие малую собственную индуктивность и большой к.п.д. преобразования накопленной электрической энергии в энергию плазмы. Недостаток коаксиальных систем — их малая надежность и недолговечность. Электродная система является технологичной и высокопроизводительной за счет высокой частоты процесса создания механических нагружающих усилий.
По числу повторных разрядов выделяют системы разового и многократного действия. Более экономичны и производительны системы многократного действия. Величина энергии, преобразуемой электродной системой, также влияет на конструктивное исполнение и долговечность.
В горной промышленности большее применение получили электродные системы, рассчитанные на с частотой следования импульсов 1—12 в минуту. При электрическом разряде из-за тепловых процессов происходит эрозия электродов, интенсивность которой зависит от материала электродов и рабочей жидкости, а также от количества энергии, выделяющейся в
канале разряда. Рабочая часть электродов изготавливается из стали Ст3 или Ст45; диаметр выступающей части должен быть более 8 мм при длине не менее 12 мм. В зоне электрода температура плавления железа достигается за 10-6 с, а температура кипения за 5 • 10-6 с.
Вызванное этим интенсивное разрушение электрода сопровождается образованием плазменных струй (паров и жидких капель металла). Ослабленной зоной электрода является изоляционный слой на границе выхода стержня — токовода и воды.
Основными требованиями к электродной системе являются: высокий коэффициент преобразования электрической энергии, высокие
эксплуатационные и технологические показатели, экономически целесообразная стойкость. Наибольшую эрозионную стойкость имеют электроды из сплава меди, карбида вольфрама и никеля.
Площадь поверхности катода должна превышать площадь анода в 60—100 раз, что 6 сочетании с подачей положительного импульса напряжения на анод обеспечит снижение потерь энергии на стадии формирования разряда и повысит к.п.д. системы. Рациональный материал изоляции — стеклопластик, вакуумная резина, полиэтилен.
Электрогидравлический взрыватель применяется при инициируемом разряде, воспринимает динамические нагрузки, воздействие сильноточных полей и рабочей жидкости, что приводит к разрушению корпуса, изоляции и электрода.
В электрогидравлическом взрывателе положительный электрод изолирован от корпуса; взрывающийся проводник устанавливается между электродом и заземленным корпусом, выполняющим роль отрицательного электрода.
В зависимости от решаемых технологических задач применяются проводники из меди, алюминия, вольфрама; размеры проводника в пределах диаметр 0,25—2 мм, длина 60—300 мм. Конструкция электрогидравлического взрывателя должна обеспечивать концентрацию энергии в требуемом направлении и формирование цилиндрического по форме фронта ударной волны, а также технологичность операций по установке и замене взрывающегося проводника.
Для выполнения части этих требований необходимо, чтобы корпус электрогидравлического взрывателя служил жесткой преградой Для распространяющегося фронта волн.
Это обеспечивается применением специальных кумулятивных выемок в корпусе взрывателя и определенного сочетания линейных размеров корпуса и проводника. Так, диаметр корпуса взрывателя должен в 60 раз и более превышать диаметр взрывающегося проводника.
В последние годы разработаны новые конструктивные схемы и специальные устройства, повышающие эффективность действия рабочих органов, обеспечивающие направленность действия на объект обработки образуемых волн и гидропотока.
К таким устройствам относят пассивные отражающие поверхности, электроды со сложной геометрией, генераторы расходящихся волн. Имеются также устройства для протяжки взрывающегося проводника, что осложняет конструкцию взрывателя, но повышает технологичность процесса.
Для непосредственного преобразования энергии электрического разряда в энергию импульса сжатия применяют специальные электровзрывные патроны (рис. 34).
Рабочая жидкость, заполняющая технологический узел, играет весьма существенную роль в процессе электрического разряда. Именно в жидкости воспроизводится разряд с непосредственным преобразованием электрической энергии в механическую.
В жидкости наблюдается ионизация, а также газовыделение непрореагировавших кислорода и водорода (до 0,5 • 10-6 м3/кДж), жидкость вовлекается в движение распространяющимся фронтом волн, что образует в технологическом узле гидропоток, способный совершать механическую работу.
В качестве рабочей жидкости применяется вода (техническая, морская, дистиллированная) и водные электролиты; углеводородные (керосин, глицерин, масло трансформаторное) и силиконовые (полиметилсилоксаны) жидкости, а также специальные диэлектрические, жидкие и твердые составы. Большее применение получила техническая вода, удельная электрическая проводимость которой составляет (1- 10) См/м.
Электрическая проводимость жидкости существенно влияет на величину энергии, необходимой для формирования разряда, так как определяет величину пробойного напряжения и скорость движения стримеров. Минимальная напряженность, при которой возникают стримеры, оценивается в 3,6 • 103 В/мм.
Значения удельной электрической проводимости (См/м) некоторых жидкостей, применяемых для заполнения технологического узла, приведены ниже.
Техническая вода (водопроводная).........................................................(1—10) 10-2
Морская вода.............................................................................................1-10
Дистиллированная вода............................................................................4,3 -10-4
Глицерин.....................................................................................................6,4 • 10-6
Видно, что диэлектрические жидкости имеют малую ионную проводимость. Удельное электрическое сопротивление жидкости (рж) определяет также величину электрического к.п.д. и зависит от величины энергии, вводимой в единицу объема рабочей жидкости. Так, для воды параметр рж уменьшается с увеличением до значений 500—1000 кДж/ ; с дальнейшим возрастанием W0 параметр рж стабилизируется в пределах 10—25 Ом-м.
Электрический разряд в жидкости зависит также от плотности рабочей жидкости — с увеличением плотности уменьшаются пик перенапряжений и крутизна спада тока. Чтобы повысить величину напряжения разрядного контура, а соответственно величину напряжения пробоя, следует применять рабочие жидкости с низкой удельной проводимостью (пример — техническую воду).
Применение жидкостей с большей проводимостью облегчает процесс образования скользящих разрядов; увеличивает потери энергии на стадии формирования канала и снижает амплитуду ударной волны.
В качестве рабочей жидкости используют также вязкие составы (веретенное масло — 70%, алюминиевый порошок — 20%, мел — 10%), что повышает на 20—25 % амплитуду ударной волны и снижает потери энергии.
В качестве диэлектрика применяют также металлизированную диэлектрическую нить и бумажные ленты, пропитанные электролитом. Ввод твердого диэлектрика уменьшает общие затраты энергии на пробой (в 4—5 раз), снижает требуемое число стримеров (в 4—6 раз) [44, 46], уменьшает термическую радиацию и ультрафиолетовое излучение. Введение в поток рабочей жидкости твердых частиц токопроводящих добавок применяют взамен взрывающихся проводников.