Краткая техническая характеристика вакуумного деаэратора ВД-400
Назначение и техническая характеристика.
Вакуумный деаэратор ВД-400 (см. рис.4.3) предназначен для удаления коррозийно-агрессивных газов из подпиточной воды энергетических котлов. В соответствии с ГОСТ 16860-77 ВД-400 должен обеспечить средний подогрев воды на величину от 15º до 25°С при изменении произ-водительности в деаэраторе от 30% до 120% от номинальной, содержание кислорода в деаэрированной воде не должно превышать 30 мкг/кг, свободная углекислота должна отсутствовать.
В качестве теплоносителя используется пар от РУ-16/3 .
Эжектор типа ЭПО-3-25/75 предназначен для отсоса паровоздушной смеси из вакуумного деаэратора.
Рабочей средой является пар с абсолютным давлением 0,588 мПа (6 ата ), охлаждающей водой служит ХОВ с БЗК.
Основные технические характеристики ВД-400:
Номинальная производительность - 400 т/ч
Максимальная производительность - 480 т/ч
Минимальная производительность - 120 т/ч
Рабочее абсолютное давление - 0,075-0,5 кгс/см²
Температура теплоносителя - 70-180°
Основные технические характеристики эжектора:
Расход пара - 1000 кг/ч
Абсолютное давление пара перед соплами - 7 ата
Температура пара - 158ºС
Расход охлаждающей воды - 165000 кг/ч
Температура охлаждающей воды - 30ºС
Производительность по паровоздушной смеси - 87 кг/ч
Рис 5.3. Вакуумный деаэратор ВД-400
Описание конструкции и принцип работы.
В вакуумном деаэраторе ВД-400 применена двухступенчатая деаэрация воды: I-я ступень струйная, 2-я – барбатажная, что надежно обеспечивает требуемое нормами остаточное содержание кислорода и углекислоты в широком диапазоне и изменение тепловой и гидравлической нагрузки деаэратора.
Деаэратор работает следующим образом: химически обессоленная вода поступает в деаэратори попадает в распределительный коллектор, откуда стекает на первую тарелку. Прошедшая сквозь отверстия первой тарелки вода попадает на вторую тарелку. Такая конструкция первых двух тарелок объясняется выполняемой ими функцией встроенного охладителя выпара, т.е. должны обеспечить полную конденсацию необходимого количества выпара. Третья является основной, обеспечивающей работу деаэратора при всех нагрузках. В деаэраторе имеется отсек, куда подается пар. Пар поступает под барбатажный лист, а оставшаяся вода по каналу вытесняется на уровень барбатажного листа и отводится из деаэратора вместе с деаэраторной водой.
Проходя сквозь отверстия барбатажного листа и слой воды на нем, обеспечиваемый переливным порогом, пар догревает воду до температуры насыщения и подвергает интенсивной обработке.
При этом под листом образуется соответствующая паровая подушка, которая с увеличением расхода пара возрастает и избыточный пар перепускается в обвод барбатажного листа в струйный отсек между третьей и четвертой тарелками. Пар, прошедший сквозь барбатажный лист пересекает струйный поток, сливающийся с четвертой тарелки, частично конденсируясь и нагревая при этом воду, и также поступает в струйный отсек между третьей и четвертой тарелками. В этом отсеке происходит основная конденсация пара и нагрев воды до температуры, близкой к температуре насыщения. Затем пар поступает в отсек между второй и третьей тарелками, где практически полностью конденсируется. В отсеке между первой и второй тарелками происходит охлаждение паровоздушной смеси и охлаждение неконденсирующихся газов, которые отсасываются эжектором.
Такая конструкция деаэратора обеспечивает полный противоток между паром и водой на всем пути осуществления процесса дегазации, исключения мертвых зон и интенсивную вентиляцию всех паровых объемов, многократность и непрерывность обработки воды. Корпус деаэратора изготовлен из углеродистой стали, все внутренние элементы из нержавеющей стали. Крепление всех элементов к корпусу и между собой осуществляются электрической сваркой.
Эжектор имеет три ступени сжатия и состоит из следующих основных элементов: стального сварного корпуса трубной системы, верхней крышки, водяной камеры, сопел и диффузоров.
Корпус образован тремя сваренными между собой цилиндрическими камерами, объединенными верхним и нижним фланцами. В камерах размещены три ступени трубной системы, диффузор.
Трубная система выполнена из трех групп охлаждающих трубок U-образной формы Ø19х1 и сплава МНЖ-5-1, развальцованных в трубной доске. С целью обеспечения интенсивной конденсации пара и охлаждения паровоздушной смеси, каждая ступень трубной системы разделена горизонтальными перегородками, образующими проходы для паровоздушной смеси.
В трубной доске имеются отверстия для протока конденсата из третьей ступени эжектора во вторую, из второй ступени в первую. Трубная система при помощи шпилек крепится к нижнему фланцу корпуса и устанавливается на водяной камере.
Водяная камера выполнена сварной и состоит из днища с входным и выходным фланцами, перегородок и общего фланца, к которому крепится трубная система и корпус.
Крышка эжектора состоит из трех камер, собранных на общем фланце. К всасывающей камере первой ступени приварен входной приемный патрубок паровоздушной смеси. В верхней части каждой камеры имеются соответствующие гнезда под паровые сопла и во фланце отверстия для перехода паровоздушной смеси во вторую и третью камеры. Помимо этого во фланце имеются три посадочных отверстия для установки в них диффузоров, сопла и диффузоры расположены по центральной продольной оси корпуса каждой ступени. Сопла выполнены из нержавеющей стали, а диффузоры – литые, латунные.
Паровоздушная смесь поступает во всасывающую камеру эжектора и увлекается выходящей из сопла с большой скоростью струей пара через смесительную камеру в диффузор первой ступени, где происходит сжатие ее давления, устанавливающегося в охладителе первой ступени. Из диффузора паровоздушная смесь поступает в нижнюю часть корпуса, откуда перегородками направляется в холодильник, смывая его трубки снаружи. Охлаждающая вода поступает в водяную камеру и проходит последовательно по трубкам холодильников.
При этом происходит конденсация пара, находящегося в смеси и несконденсировавшаяся часть проходит во всасывающую камеру и входную часть диффузора второй, а затем и третьей ступени.
Образовавшийся конденсат рабочего пара третьей ступени отводится в отсек охладителя второй ступени, здесь часть его испаряется, а часть смешивается с конденсатом второй ступени и поступает в охладитель первой ступени, а оттуда в бак низких точек.
Деаэратор ВД-400 не имеет запаса по уровню воды в своем корпусе, поэтому для устройства работы последнего имеется ВУС и промежуточный бак с регулируемым уровнем воды, подающейся на всас перекачивающих насосов.
Установка промбака с регулируемым уровнем (Ндоп.= 80÷220 см.) обусловлена тем, что самослив из ВД-400 к ПН менее 10 метров.
Паровое пространство промбака соединено с паровым пространством вакуумного деаэратора трубой Ду 100 ( заведена между I и II тарелкой ), что позволяет удалить остаточный кислород после прохождения деаэратора.
Для защиты деаэратора от переполнения и превышения допустимого давления с промежуточного бака выполнен гидрозатвор в БЗК. Для достижения минимальной гидравлической загрузки деаэратора в 30% от номинальной имеется линия рециркуляции с ПН Ду 100[46].