Физические характеристики и выбор материалов

Коммутационных плат

Техника поверхностного монтажа обусловливает разработку коммутационных плат с повышенными электрическими характеристиками и теплоотводом, что важно для быстродейст-вующих устройств. Выполнение требований к электрическим
характеристикам связано прежде всего с объемным сопротивле-
нием диэлектрического материала основания коммутационной
платы, которое должно быть как можно выше (диапазон объем-
ного удельного сопротивления используемых или рассматривае-
мых как пригодные к использованию материалов обычно состав-
ляет 109-1016 Ом×см). В отношении материалов плат для быст-
родействующих устройств предпринимаются попытки максималь-
но снизить их диэлектрическую проницаемость для уменьшения
паразитной емкости. Вместе с тем необходима совместимость ма-
териалов коммутационных плат с материалами разрабатываемых
сверхбыстродействующих интегральных схем, например, с арсен-
идом галлия. Обычно традиционная стеклоэпоксидная плата
имеет диэлектрическую проницаемость порядка 4,8. Большинство
новых материалов имеет меньшую диэлектрическую проницае-
мость, например, арамидэпоксидные материалы – 3,9, а некото-
рые стеклотефлоновые композиционные материалы – 2,3. Весьма
перспективны для изготовления коммутационных плат фторполи-
меры из-за простоты технологии их обработки и низкой диэлек-
трической проницаемости [9].

Две близкие конструкторско-технологические разработки ком-
мутационных плат представляются весьма перспективными для
ТПМК: заказные платы с заданных полным сопротивлением ли-
нии коммутации и со встроенными пассивными компонентами.
Согласование характеристического сопротивления коммутацион-
ной платы с наиболее важной из устанавливаемых на ней интег-
ральных схем означает отсутствие отражений или искажений в тракте
передачи сигнала на высоких частотах. В настоящее вре-
мя осуществить такое согласование исключительно трудно, по-
скольку допуски
-
на импеданс коммутационной платы могут доходить до ±25%. Это объясняется комплексом причин: разбросом по толщине диэлектрического материала, неточностью соотношений эпоксидной смолы и стекловолокна в составе материала основания платы от партии к партии, просто воздействием медной фольги или подтравленной коммутационной дорожки, которые во многом определяют допуск на импеданс. Вероятно, в течение пяти ближайших лет развитие быстродействующих устройств будет способствовать уменьшению допуска на импеданс до уровня не более ±5%, что в свою очередь потребует от изготовителей коммутационных плат реализации более жестко контролируемых технологических процессов. Использование для плат материалов, обеспечивающих заданный импеданс, и соответствующих технологических процессов позволило создать конструкцию, содержащую пассивные компоненты непосредственно в структуре коммутационной платы. Встраивание конденсаторов малых номиналов в принципе представляется возможным, однако на практике в настоящее время получены пока лишь платы с резистивными нагрузками. Это означает,что резисторы могут
быть электрически соединены непосредственно с полупроводни-
ковой ИС через металлизированное сквозное отверстие. В наи-
более известной на настоящий момент технологии патентованный
материал для плат («Ohmega-Ply» производства Ohmega Tech
nologes Corp.), представляющий собой комбинацию слоев ни-
келя и меди, наносится на диэлектрический слоистый материал
основы (выбираемый из широкого набора материалов - от стек-
лоэпоксидного до фторполимеров), после чего методом селектив-
ного травления формируются встроенные резисторы. Допуск на
номинал резистора равен ±10% и более надежно обеспечивает-
ся электролитическим осаждением, чем при использовании на-
весных чип-резисторов, которые при выполнении полного электри-
ческого соединения их с коммутационной платой могут быть
смещены с места их позиционирования.

Для менее ответственных применений на рынке можно при-
обрести недавно появившиеся резистивные полимеры. В случае,
когда требования к стабильности не являются решающим кри-
терием, можно рекомендовать использование проводящих паст
на основе углеродосодержащих чернил.

В сочетании с TПMK толстопленочные системы на основе по-
лимеров открывают большое разнообразие возможности их реа-
лизации. Применение толстых полимерных пленок обеспечивает
ряд преимуществ: пасты довольно быстро отверждаются (при до-
статочно низких температурах) и могут использоваться для со-
здания полностью аддитивного технологического процесса (са-
мые простые коммутационные платы обычно изготавливаются
методами субтрактивной технологии). Кроме того, при этом су-
ществует возможность широкого выбора материалов основы пла-
ты, поскольку в данном случае к материалу предъявляются всего
лишь два основных требования: минимальная рельефность по-
верхности платы и устойчивость к температурным воздействиям.
Причем требования к рельефности весьма относительны, так как
по всей вероятности в будущем внушительное количество плат
будет производиться в виде монолитных систем с трехмерной
разводкой коммутации (рельефные или объемные платы), выпол-
няющих одновременно функцию коммутационных плат и корпу-
са устройства. Имеются сведения о реализации рельефных плат
с применением по крайней мере двух технологий. Так
называемая «фотоселективная» технология включает литье пласт-
массы с использованием нагрева УФ-излучением и последующую
металлизацию медью. С помощью этой технологии можно полу-
чить металлизированные сквозные отверстия, при этом вся рель-
ефная поверхность платы должна,подвергаться воздействию УФ-
излучения, за исключением участков, закрытых фотомаской. Это
метод одноступенчатого литья. Существует вариант с коммерческим названием «Mould-n-Plate», предполагающий двухступен-
чатое литье, но без применения фотомаски. Пластмасса, с-
формированная на первом этапе литья, покрывается медью методом химического осаждения; на втором этапе литья следующий слой пластмассы формируется в виде маски для создания разводки в проводящем слое, полученном после первого этапа. Другие процессы предполагают широкое привлечение лазерной
технологии, например, для формирования ком-мутационных до-
рожек, но эти технологические разработки еще не вышли из ста-
дии НИР. Лазер может использоваться для удаления сложного
покрытия, нанесенного на изолирующую подложку, а также для
вскрытия проводящего материала через изолирующий слой. Kpo-
ме того, уже реализована лазерная селективная трассировка
коммутации путем удаления экспонированного («темного») по-
лимера, вскрытия подслоя металлизации и формообразования
элементов коммутации.

Исследователи фирмы Toshiba используют также лазеры для
получения недорогим способом углеродосодержащих резистив-
ных слоев из полимерного композиционного материала на стек-
лоэпоксидной и бумажнофенольной подложках. Последние япон-
ские фирмы предпочитают использовать для большинства изде-
лий бытовой электроники. Полученные углеродосодержашне
пленочные резисторы, как следует из сообщений, по качеству
сравнимы со стандартными полимерными резисторами. Толстые полимерные пленки в перспективе позволят реализовать возможности смешанных технологий, поскольку паяемые медные подложки коммутационных плат с мед-
ными контактными площадками, содержащими припой, могут
быть совместимыми с толстопленочной технологией, используе-
мой для изготовления резисторов. На их поверхность можно так-
же монтировать компоненты, например, чип-резисторы. С по-
мощью многослойной структуры проводников можно, вероятно,
также реализовывать, частично или полностью, внешние слои
коммутации, но без проведения повторного отжига, как в случае
обычной толстопленочной технологии. Имеются и другие существенные преимущества. Так, подлож-
ка, коммутационные дорожки, и резисторы, выполненные мето-
дами полимерной технологии, требуют меньших затрат средств,
чем в традиционной технологии. Однако полимеры в настоящее
время непригодны для высоконадежных схем, поскольку темпе-
ратурный коэффициент сопротивления у них хуже, чем у тради-
ционных резисторов. Существуют некоторые сомнения относи-
тельно паяемости многих толстопленочных проводников, поэтому
перед пайкой, обычно требуется дополнительная металлизация контактных площадок. В противном случае должна применяться микросварка с помощью алюминиевой микропроволоки.

Выбору полимерной системы следует уделять большое внимание. Основными материалами в полимерной технологии являются термореактивные и термопластичные полимеры (последние отличаются тем, что плавятся при повторном нагревании, после отверждения). Очень важно также правильно выбрать режим от
верждения. Процесс отверждения обычно проходит в конвекционной печи, хотя в настоящее время для промышленного применения разрабатываются печи с использованием ИК-нагрева, что значительно сокращает длительность процесса отверждения. Эф
фективность методов с ИК нагревом также существенно выше,
поскольку разные полимерные системы характеризуются сильным поглощением излучения на длинах волн ИК-диапазона; образующиеся при этом химические связи имеют максимальную прочность (на молекулярном уровне полимера). Благодаря это-
му формируется пленка со стабильными электрическими пара-
метрами и минимальной усадкой после отверждения.

Проведенные исследования, касающиеся вопросов паяемости показали, что для большинства применений проводящие
пасты имеют вполне приемлемую удельную проводимость. О-
днако, несмотря на то что алюминиевая проволока достаточно хо-
рошо приваривается с помощью клинообразного инструмента к
контактным площадкам платы, покрытым медью (никелем), свар-
ные соединения обладают невысокой прочностью. Сам же ком-
понент закрепляется надежно. Что касается диэлектрических
паст, то исследователи столкнулись с некоторыми трудностями, свя-
занными с их печатью, в частности с недостаточной разрешающей
способностью печати для формирования отверстий межслойных
переходов, в том числе глухих. Вообще печать этих паст явля-
ется сложной технологической операцией из-за различной реоло-
гии паст, хотя по своим электрическим свойствам они пригодны
для использования. Качество резисторов, формируемых на осно-
ве полимерных систем, также оказалось достаточно высоким, но
все же, как правило, оно уступает по некоторым показателям
толстопленочным резисторам (и, естественно, показателям на-
весных чип-резисторов). Допуск на номи-нальное сопротивление полимерного резистора во многом зависит от материалов исполь
зуемой подложки: исследователи полагают, что максимальная
точность достижима лишь при увели-чении количества техноло-
гических операций, например, с помощью нанесения между под-
лож-кой и резистором промежуточного диэлектрического слоя.
Разнообразные конструктивно-технологические варианты изго-
товления устройств с использованием полимерных материалов
представлены в таблице 2.17 (см. также рисунки 2.44 и 2.45) [14].

Физические характеристики и выбор материалов - student2.ru

Рисунок 2.44 - Фрагмент микросборки с применением полимерной технологии

Метод трафаретной печати иногда применяется наряду с фо­толитографией, например при маскировании проводящих доро­жек от затеканий припоя. Разрешающая способность ручной опе­рации получения толстопленочных элементов с использованием трафарета на основе ткани составляет 0,002 дюйма (0,0508мм); металлический трафарет имеет разрешение 0,001 дюйма (0,0254 мм), однако многие изготовители еще не имеют доста­точного опыта трафаретной печати с разрешающей способностью лучше 0,001 дюйма (0,0254 мм). Распространенное, но дорогое оборудование может реально пропечатывать линии шириной от 0,003 дюйма (0,0762 мм) до 0,005 дюйма (0,127 мм) с точностью 0,001 дюйма (0,0254 мм). На таком уровне точности воздействие окружающей среды становится существенно значимым фактором и может возникнуть необходимость в использовании чистой ком­наты.

Таблица 2.17 - Конструктивно-технологические варианты изготовления

устройств с использованием полимерных материалов

Конструктивно-технологичекий ва­риант   Подложка   Коммутация Особенности монтажа компо­нентов Применяемые резисторы
Полностью поли­мерная система   Коммутационная плата и полимер­ная многослоная структура   Наружные поли­мерные провод­ники   Полимерный композицион­ный материал (FR4 или другая многослойная струк­тура), а также пластмассовый конструктив     Стандартная двухсторонняя плата с металлизиро­ванными сквозными отверстиями     Керамическая     Полимерные толстопленоч­ные проводники, чередуе­мые с толстопленочным ди­электриком     Медные проводники, поли­мерные толстопленочные проводники, чередуемые с диэлектрическим покрытием   Толстопленочные проводники; структура на основе керамических материалов, покрытая с одной или двух сторон слоем полимерного проводника и полимерного диэлектрика   Пайка или приклейка (про­водящим клеем) на контакт­ных площадках платы; монтаж гибкой проволокой на полимер­ных проводниках     Пайка на медных или поли­мерных проводниках; монтаж с помощью проводящего клея на полимерных проводниках; монтаж гибкой проволокой на полимерных и медных проводниках   Пайка или приклейка на любую из толстых пленок; монтаж гибкой проволокой на толстопленочной керамической или полимерной проводящей толстой пленке   Печатные резис­торы и (или) на­весные чип-резис­торы   Печатные резисто­ры и (или) навес­ные чип-резисторы   Печатные толсто­пленочные резисто­ры из керамики на основе оксида ру­тения (подверга­ются подгонке перед нанесением на них полимерной толстой пленки); печатные полимерные чип-резисто­ры, монтируемые с помощью пайки или с применением проводящего клея  

Другие материалы для коммутационных плат.

Одним из способов решения проблемы согласования материа­лов коммутационных плат по ТКР (температурный коэффициент расширения) с точки зрения качества паяных соединений явля­ется правильный выбор материалов для изготовления самой пла­ты. Было бы идеально, если бы ТКР известного или вновь разра­ботанного материала основания платы совпадал, скажем, с ТКР керамического кристаллоносителя. Обычно керамика имеет ТКР порядка 6×10-6 град-1; ТКР широко применяемого стеклоэпоксидного материала, например типа FR4, более чем в два раза больше, порядка (14-18)×10-6 град1. Большинство новых материалов, рассматриваемых применительно к ТПМК, имеет довольно близ­кие значения ТКР, лежащие в пределах (6-16)×10-6 град-1. Стеклотефлоновая слоистая структура, являющаяся довольно перспективным в некоторых отношениях материалом, имеет ве­личину ТКР, равную 20×10-6 град-1, и низкую температуру стек­лования (75 °С). Некоторые слоистые структуры из модифициро­ванного политетрафторэтилена (например, семейство, материалов RIOSHI, разработанных фирмой Rogers Corp.) действитель­но обладают низким ТКР (8∙10-6 град–1), низким модулем упру­гости и малой диэлектрической постоянной.

Физические характеристики и выбор материалов - student2.ru

а

Физические характеристики и выбор материалов - student2.ru

б

Физические характеристики и выбор материалов - student2.ru

в

Рисунок 2.45 - Варианты конструкции толстопленочной гибридной микросборки, выполненной с применением полимерной технологии: а - толстопленочная ГИС (для наглядности показана однослойная конструкция, хотя возможны много­слойные, выполненные на полимерной плате); б - коммутационная плата тол­стопленочной микросборки с многослойными полимерными покрытиями; в - толстопленочная микросборка, выполненная на анодированной алюминиевой плате по полимерной технологии:

1 - припой; 2 - чип-конденсатор; 3 - припойная площадка; 4 -толстопленоч­ный резистор; 5 - полимерная несущая плата; 6 - навесной бескорпусной ак­тивный компонент; 7 - толстопленочный проводник; 8 - диэлектрик; 9 - про­водник из меди; 10 - корпусированный компонент, монтируемый на поверхности платы; 11 - полимерный диэлектрик; 12 - чип-конденсатор; 13 - полимерный толстопленочный проводник; 14 - металлизированное сквозное отверстие; 15 - коммутационная плата; 16 - гибкий монтаж безкорпусного компонента с по­мощью полимерного клея, содержащего золото; 17 - полимерный проводник;18 - печатный резистор (после подгонки); 19 - подложка из анодированного алюминия

В настоящее время выделились два основных направления развития исследований в области создания материалов коммута­ционных плат [9]:

• Сочетание волокнистых модификаторов, имеющих низкий ТКР, с органическими смолами (например, эпоксидная смо­ла - кевлар, полиимид - кевлар, полиимид - кварц).

• Сочетание компенсационного слоя (или сердечника) платы, имеющего низкий ТКР (например, медь – инвар - медь, сплав 42, сплав медь - молибден - медь, медь - графит) со стекло-эпоксидной или стеклополиимидной многослойной структурой (рисунок 2.46).

Физические характеристики и выбор материалов - student2.ru

Рисунок 2.46 - Типичная многослойная плата с шинами питания и заземления из инвара, плакированного медью:

1 - сигнальная медная шина (либо шина заземления) толщиной 0,0014 дюйма (0,0356 мм); 2 - стеклоэпоксидный материал толщиной 0,004 дюйма (0,1016мм); 3 -стеклоэпоксидный материал толщиной 0,006 дюй­ма (0,1524 мм); 4 - шина заземления из инвара, плакированного медью, толщиной 0,005 дюйма (0,127 мм); 5 - шина питания из инвара, плакированного медью, толщиной 0,005 дюйма (0,127 мм); 6 - стеклоэпоксидный материал толщиной 0,006 дюйма (0,1524 мм)

Таблица 2.18 - Материалы для изготовления коммутационных плат и их основные характеристики

Материал   Рабочая тем­пература   Модуль упругости, фунт/дюйм2   ткр, °С   ΔТКР (по отноше­нию к оксиду алю­миния) J-фактор (модуль упругости×DТКР) Коэффициент прогиба, фунт/дюйм  
Оксид алюминия   40×10 6 6,4×10 -6   40×10 6
Тефлон (не моди­фицированный)   100 °С   23 °С 56 °С 0,015×10 6 0,0516×10 6 0,1×××10 6 100×10 6   94,6×10 -6   1,4   4,9 9,46 15×10 3 51,6×10 6 100×10 3
Полиимид (кан­тон)     0,61.10 6 45×10 -6 38,6 ×10 -6 23,5 610×10 3
Полиимидное стекловолокно     4,5.10 6 16×10 -6 9,6×10 -6 43,2 4,5×10 4
Медь   17×10 6 17,6×10 -6 11,2×10 -6 190,4 17×10 4
Припой (63/37) 100 °С 1,8×10 6 22×10 -6   27,6 1,8×10 4
    23 °С 3,0.10 6 21,5×10 -6 15,35×10 -6 46,1 3,0×10 4
    -56 °С 4,7×10 6 21,5×10 -6     72,1 4,7×10 4
Силиконовая резина -23 °С 0,225×10 3 810×10 -6 804,5×10 -6 0,1822 0,225×10 3
Алюминий   10×10 6 23,7×10 -6      

Кевлар, в сущности, имеет самый низкий ТКР (по оси X, Y) из всех перечисленных материалов (3-7)×10 -6 град –1 и мень­шую диэлектрическую постоянную, чем стекло (что особенно важно для быстродействующих устройств), но довольно сильно по­глощает влагу и подвержен микрорастрескиванию, что связано с высоким ТКР по оси Z (перпендикулярно подложке). Сущест­вуют также трудности в получении хорошей адгезии составов «смола - волокно» с композиционными материалами, включая кевлар. В сравнении с имеющимися материалами для изготовле­ния коммутационных плат кевлар обладает значительными пре­имуществами: он примерно на 20% легче стеклоэпоксидного ма­териала и т. д., однако специалисты считают технологию его об­работки довольно сложной.

Основным доводом против использования материалов с ком­пенсационным слоем является их вес, но с учетом перспективы уменьшения габаритов коммутационной платы в будущем этот фактор может стать менее существенным. Кроме того, металлические компенсаторы могут служить в качестве теплоотвода. Ве­роятно, основным материалом компенсационного слоя в плане перспективы применения является инвар, плакированный медью, который достаточно широко применяется в производстве комму­тационных плат на фирмах-изготовителях сложной аппарату­ры, таких как АТТ, которая использует его в своей системе WE 32000. Каждая система содержит шестислойные платы 2,5 х 3,5 дюйма (63,5 х 88,9 мм), несущие на одной плате до шести безвыводных керамических (с 84 контактными площадками) кристаллоносителей. В качестве материала компенсационного слоя инвар относительно недорог. Перспективным материалом для бо­лее эффективного отвода тепла является молибден, плакиро­ванный медью, хотя и стоит дороже. В таблицах 2.18 и 2.19 приведены материалы, используемые в на­стоящее время для изготовления коммутационных плат, и их ос­новные характеристики.

Таблица 2.19 - Сравнение слоистых структур для коммутационных плат

Наши рекомендации