Газотурбинные установки
На отечественных ТЭС начинают широко использовать газотурбинные установки (ГТУ). В качестве рабочего тела в них используется смесь продуктов сгорания топлива с воздухом или нагретый воздух при большом давлении и высокой температуре. В ГТУ преобразуется теплота газов в кинетическую энергию вращения ротора турбины.
По конструктивному исполнению и принципу преобразования энергии газовые турбины не отличаются от паровых. Экономичность работы газовых турбин примерно такая же, как и двигателей внутреннего сгорания, а при очень высоких температурах рабочего газа экономичность газовых турбин выше. Кроме того, газовые турбины более компактны, чем паровые турбины и двигатели внутреннего сгорания аналогичной мощности.
Особенно широкое распространение газовые турбины получили на транспорте. Применение газовых турбин в качестве основных элементов авиационных двигателей позволило в современной авиации достичь больших скоростей, грузоподъемности и высоты полета. Газотурболокомотивы на железнодорожном транспорте конкурентоспособны с тепловозами, оборудованными поршневыми двигателями внутреннего сгорания.
Современные газовые турбины в основном работают на жидком топливе, однако кроме жидкого топлива может использоваться газообразное: как естественный природный горючий газ, так и искусственный газ, получаемый особым сжиганием твердых топлив любых видов.
Представляет практический интерес перспектива сжигания угля в места его залегания. При этом под землю компрессорами в необходимом количестве подается воздух, производится специальное сжигание угля с образованием горючего газа, который затем подается по трубам к газотурбинным установкам. Впервые в мире такая опытная электростанция построена в Тульской области.
(Работа газотурбинной установки осуществляется следующим образом. В камеру сгорания / подается жидкое или газообразное топливо и воздух (рис. 2.14, с). Получающиеся в камере сгорания газы 2 с высокой температурой и под большим давлением направляются на рабочие лопатки турбины 3. Турбина вращает электрический генератор 4 и компрессор 5, необходимый для подачи под давлением воздуха 6 в камеру сгорания. Сжатый в компрессоре воздух перед подачей в камеру сгорания подогревается в регенераторе 7 отработанными в турбине горючими газами 8. Подогрев воздуха позволяет повысить эффективность сжигания топлива в камере сгорания.
ПАРОГАЗОВЫЕ УСТАНОВКИ
Отработанные в ГТУ газы имеют высокую температуру, что неблагоприятно сказывается на КПД термодинамического цикла. Совмещение газо- и паротурбинных агрегатов таким образом, что в них происходит совместное использование теплоты, получаемой при сжигании топлива, позволяет на 8—10% повысить экономичность работы установки, называемой парогазовой, и снизить ее стоимость на 25%.
Парогазовые установки, использующие два вида рабочего тела - пар и газ - относятся к бинарным. В них часть теплоты, получаемой при сжигания топлива в парогенераторе, расходуется на образование пара, который затем направляется в турбину (рис. 2.15), Охлажденные до температуры 650—700°С газы попадают на рабочие лопатки газовой турбины. Отработанные в турбине газы используются для подогрева питательной воды, что позволяет уменьшить расход топлива и повысить КПД всей установки, который может достичь примерно 44%,
Парогазовые установки могут работать также по схеме, в которой отработанные в газовой турбине га5ы поступают в паровой/котел (рис. 216 — обозначения те же, что и на рис. 2.15). Газовая турбина в этом случае служит как бы частью паросиловой установки. В камере сгорания газотурбинной установки сжигается 30—40% топлива, а в парогенераторе — остальное топливо.
Газотурбинные установки могут работать только на, жидком или газообразном топливе, так как продукты сгорания твердого топлива, содержащие золу и механические примеси, оказывают вредное влияние на лопатки газовой турбины. В газотурбинных установках, так же как и в обычных паросиловых установках, тепловая энергия преобразуется в механическую в турбинах и механическая энергия — в электрическую в генераторах. Эта схема электромеханического преобразования энергии требует использования материалов, способных выдерживать большие механические нагрузки при больших частотах вращения вала турбины и высоких температурах. Ограниченная прочность материалов вынуждает использовать пар при температурах не выше 600°С, в то время как температура сжигаемого топлива достигает 2000°С. Сокращение разницы этих температур позволит существенно повысить КПД тепловых установок.