Технический углерод П367Э
Широкое применение полимерных материалов в народном хозяйстве и развитие новых отраслей науки и промышленности – электроника, вычислительная техника, техника связи, авиация, космонавтика, судостроение и др. В этой связи появилась проблема обеспечения этих отраслей принципиально новыми материалами и изделиями, обладающими способностью снятия (отвода) зарядов статического электричества, магнитными, радиошумо-, звукопоглощающими, маскирующими и поглощающими электромагнитное излучение свойствами, способностью к неоднократному замыканию и размыканию электрических контактов в системах управления в сочетании с упругостью этих материалов, эластичностью, достаточно большими многократными деформациями растяжения, сжатия и сдвига. Вполне естественно, что для решения поставленных задач в первую очередь обратились к использованию для этих целей эластомеров (каучуков) и эластомерных материалов (резин) на их основе.
1882 году впервые была запатентована антистатическая резина на основе натурального каучука, наполненного графитом, в последующие годы графит не получил
большого распространения в качестве самостоятельного электропроводного наполнителя
резин. Это связано с тем, что для получения электропроводных резин с графитом требуется введение его в больших количествах, что сопровождается существенным ухудшением пласто-эластических и физико-механических характеристик эластомерных
материалов. Заметный прогресс в получении антистатических и электропроводных резин
связан с использованием в качестве электропроводных наполнителей технического углерода, в основном ацетиленового. Обоснованием применения ацетиленового технического углерода для создания электропроводных резин послужили особенности его
свойств, а именно высокие значения дисперсности, пористости и структурности. Именно комплекс этих свойств обеспечивает возможность, при определенной концентрации ацетиленового технического углерода, образовать в резине развитую углерод-эластомерную структуру, по которой происходит перенос электрических зарядов. Увеличение процента брака изделий при переходе с Р1250 на АТГ-70 и невозможность изготовления медицинских изделий по латексной технологии с применением АТГ-70 выдвинули в разряд актуальных проблему освоения в отрасли новых марок электропроводного технического углерода. К тому же по своему качеству и уровню электропроводности ацетиленовый технический углерод не обеспечивал все возрастающие требования резиновой и других отраслей промышленности, а технология его производства исключает возможность целенаправленного изменения свойств и,
следовательно, расширение ассортимента. Необходимость расширения объемов производства электропроводных полимерных композиций потребовала разработки и создания высокопроизводительного печного способа получения электропроводного технического углерода.
Получение:
Процесс получения печного электропроводящего технического углерода отличается большим временем контакта в зоне реакции, более низким выходом целевого продукта по сравнению с обычным печным процессом получения технического углерода с аналогичным уровнем удельной поверхности. Технический углерод мароки П367Э отличается высокой величиной адсорбционной поверхности, высоким коэффициентом шероховатости и высокой структурностью. Отличительной особенностью технологического процесса является наличие зоны термоокислительной обработки образовавшихся агрегатов, время контакта в которой может достигать нескольких секунд. Рост коэффициента шероховатости, представляющего собой отношение величины удельной адсорбционной поверхности к удельной геометрической поверхности, является следствием атаки свежеобразованной поверхности частиц технического углерода молекулами СО2, Н2О и О2 и вызвано энергетической ее неоднородностью, что приводит к реагированию и удалению атомов углерода из кристаллической решетки частиц в местах поверхности, обладающих наибольшей химической активностью и именуемых активными центрами. В результате этого на месте активного центра образуется пора. Ударяющиеся о поверхность частиц тухнического углерода молекулы СО2, Н2О и О2 реагируют лишь с наиболее активными участками поверхности – активными центрами. Получается , что при каждом активном ударе молекулы СО2 или Н2О из кристаллической решетки вырывается один атом углерода, а в случае активного удара О2 – два атома углерода. Поскольку процесс протекает при сильном недостатке кислорода от стехиометрического его количества, то реакция окисления с образованием моноокиси углерода является доминирующей. Каждый активный центр на поверхности углерода после первого активного удара и реагирования представляет собой предпочтительное место для дальнейших активных ударов. Таким образом , на месте каждого активного центра образуется пора. Пористость печного технического углерода при больших временах контакта увеличивается с увеличением времени контакта, объемной доли молекул СО2, Н2О и О2 в реакционном газе, дисперсности и температуры процесса. Поскольку температура процесса ограничена стойкостью футеровки, пористость технического углерода в технологическом процессе можно регулировать объемной долей молекул СО2, Н2О и О2 и предпочтительно временем контакта. Выход в печном процессе получения электропроводного технического углерода уменьшается пропорционально пористости, при прочих равных условиях, пропорционально времени термоокислительной обработки частиц технического углерода. То есть с увеличением дисперсности технического углерода, температуры обработки частиц и времени контакта происходит значительное уменьшение выхода технического углерода. Основное влияние на электропроводность технического углерода оказывает его высокотемпературная обработка в реакционной камере реактора. Отсюда следует, что высокая электропроводность печного электропроводного технического углерода определяется технологией его получения, а технологические и усиливающие свойства могут быть выбраны в зависимости от технических требований потребителя.
Свойства:
В табл. 3 приведены сравнительные физико-химические свойства технического углерода марок П367Э (ПМЭ-80В), ПМЭ-100В, ПМ-100, Р1250.
Как видно из данных электропроводный технический углерод ПМЭ-100В по степени дисперсности несколько больше, а П367Э (ПМЭ-80В) – меньше, технического углерода
ПМ-100. Характерными особенностями, отличающими ПМЭ-100В и ПМЭ-80В от ПМ-100, являются также значительно более высокие значения йодного числа, удельной адсорбционной поверхности и абсорбции ДБФ Технический углерод марок ПМЭ-100В и
П367Э по показателям удельной геометрической поверхности и абсорбции ДБФ
превосходит ацетиленовый технический углерод Р1250. смеси с ПМЭ-100В и П367Э имеют более высокую вязкость, меньшую скорость истечения, более низкую усадку и разбухание экструдата по сравнению со смесями, содержащими ПМ-100.
Вулканизаты характеризуются также меньшей прочностью при растяжении и усталостной выносливостью при многократных деформациях растяжения, более высокими значениями напряжений при удлинении 300% и твердости, большим теплообразованием при сжатии и гистерезисными потерями при растяжении, чем резина, содержащая такое же количество технического углерода ПМ-100. Указанные отличия связаны с более высокими значениями удельной адсорбционной поверхности электропроводных марок технического углерода, что вызывает повышенное взаимодействие их с макромолекулами эластомера.
Наименьшим удельным объемным электросопротивлением (наибольшей проводимостью электрического тока) обладают резины с технический углеродом марки ПМЭ-100В, почти на порядок уступают им равнонаполненные резины с П367Э, более чем на три порядка резины с ПМ-100 и на 1.5 порядка резины с Р1250.
Свойства резиновой смеси СКИ-3 при добавлении ТУ. П367Э
В настоящее время из-за высокой цены конечного продукта, дефицитности сырья и организационных трудностей выпуск ацетиленового технического углерода, и электро проводных марок технического углерода П367Э и П267Э ограничен, они стали практически недоступными для резиновой промышленности. Для получения резин с высокой электропроводностью в эластомерную матрицу необходимо вводить достаточно большие количества электропроводного наполнителя, что существенно ухудшает технологические свойства и перерабатываемость резиновых смесей. Использование пластификаторов (смягчителей) в этом случае, хотя и приводит к повышению технологических характеристик резиновых смесей, но снижает электрическую проводимость и упруго-прочностные характеристики готового материала – поэтому ограничено.