Основы порошковой металлургии
Порошковая металлургия – область техники, охватывающая процессы получения порошков металлов и металлоподобных соединений и процессы изготовления изделий из них без расплавления.
Характерной особенностью порошковой металлургии является применение исходного материала в виде порошков, из которых прессованием формуются изделия заданной формы и размеров. Полученные заготовки подвергаются спеканию при температуре ниже температуры плавления основного компонента.
Основными достоинствами технологии производства изделий методом порошковой металлургии являются
1. возможность изготовления деталей из тугоплавких металлов и соединений, когда другие методы использовать невозможно;
2. значительная экономия металла за счет получения изделий высокой точности, в минимальной степени нуждающихся в последующей механической обработке (отходы составляют не более 1…3 %);
3. возможность получения материалов максимальной чистоты;
4. простота технологии порошковой металлургии.
Методом порошковой металлургии изготавливают твердые сплавы, пористые материалы: антифрикционные и фрикционные, фильтры; электропроводники, конструкционные детали, в том числе работающие при высоких температурах и в агрессивных средах.
Пористые порошковые материалы. Отличительной особенностью является наличие равномерной объемной пористости, которая позволяет получать требуемые эксплуатационные свойства.
Антифрикционные материалы (пористость 15…30 %), широко применяющиеся для изготовления подшипников скольжения, представляют собой пористую основу, пропитанную маслом. Масло поступает из пор на поверхность, и подшипник становится самосмазывающимся, не требуется подводить смазку извне. Это существенно для чистых производств (пищевая, фармацевтическая отрасли). Такие подшипники почти не изнашивают поверхность вала, шум в 3…4 раза меньше, чем от шариковых подшипников.
Подшипники работают при скоростях трения до 6 м/с при нагрузках до 600 МПа. При меньших нагрузках скорости скольжения могут достигать 20…30 м/с. Коэффициент трения подшипников – 0,04…0,06.
Для изготовления используются бронзовые или железные порошки с добавлением графита (1…3 %).
Разработаны подшипниковые спеченные материалы на основе тугоплавких соединений (боридов, карбидов и др.), содержащие в качестве твердой смазки сульфиды, селениды и гексагональный нитрид бора. Подшипники могут работать в условиях вакуума и при температурах до 500oС.
Применяют металлопластмассовые антифрикционные материалы: спеченные бронзографиты, титан, нержавеющие стали пропитывают фторопластом. Получаются коррозионностойкие и износостойкие изделия. Срок службы металлопластмассовых материалов вдвое больше, чем материалов других типов.
Фрикционные материалы (пористость 10…13 %) предназначены для работы в муфтах сцепления и тормозах. Условия работы могут быть очень тяжелыми: трущиеся поверхности мгновенно нагреваются до 1200oС, а материал в объеме – до 500…600oС. Применяют спеченные многокомпонентные материалы, которые могут работать при скоростях трения до 50 м/с на нагрузках 350…400 МПа. Коэффициент трения при работе в масле – 0,08…0,15, при сухом трении – до 0,7.
По назначению компоненты фрикционных материалов разделяют на группы:
а) основа – медь и ее сплавы – для рабочих температур 500…600oС, железо, никель и сплавы на их основе – для работы при сухом трении и температурах 1000…1200oС;
б) твердые смазки – предотвращают микросхватывание при торможении и предохраняют фрикционный материал от износа; используют свинец, олово, висмут, графит, сульфиты бария и железа, нитрид бора;
в) материалы, обеспечивающие высокий коэффициент трения – асбест, кварцевый песок, карбиды бора, кремния, хрома, титана, оксиды алюминия и хрома и др.
Примерный состав сплава: медь – 60…70 %, олово – 7 %, свинец – 5 %, цинк – 5…10%, железо – 5…10 %, кремнезем или карбид кремния – 2…3 %, графит – 1…2 %.
Из фрикционных материалов изготавливают тормозные накладки и диски. Так как прочность этих материалов мала, то их прикрепляют к стальной основе в процессе изготовления (припекают к основе) или после (приклепывают, приклеивают и т.д.).
Фильтры (пористость 25…50 %) из спеченных металлических порошков по своим эксплуатационным характеристикам превосходят другие фильтрующие материалы, особенно когда требуется тонкая фильтрация.
Они могут работать при температурах от –273oС до 900oС, быть коррозионностойкими и жаропрочными (можно очищать горячие газы). Спекание позволяет получать фильтрующие материалы с относительно прямыми тонкими порами одинакового размера.
Изготавливают фильтры из порошков коррозионностойких материалов: бронзы, нержавеющих сталей, никеля, серебра, латуни и др. Для удовлетворения запросов металлургической промышленности разработаны материалы на основе никелевых сплавов, титана, вольфрама, молибдена и тугоплавких соединений. Такие фильтры работают тысячи часов и поддаются регенерации в процессе работы. Их можно продуть, протравить, прожечь.
Фильтрующие материалы выпускают в виде чашечек, цилиндров, втулок, дисков, плит. Размеры колеблются от дисков диаметром 1,5 мм до плит размерами 450 х 1000 мм. Наиболее эффективно применение фильтров из нескольких слоев с различной пористостью и диаметром пор.
Прочие пористые изделия. “Потеющие сплавы“ – материалы, через стенки которых к рабочей наружной поверхности детали поступает жидкость или газ. Благодаря испарению жидкости температура поверхности понижается (лопатки газовых турбин).
Сплавы выпускаются на основе порошка нихроми с порами диаметром до 10…12 мкм при пористости 30 %. Сплавы этого типа используются и для решения обратной задачи: крылья самолетов покрывают пористым медно-никелевым слоем и подают через него на поверхность антифриз, препятствующий обледенению.
Пеноматериалы – материалы с очень высокой пористостью, 95…98 %. Например, плотность вольфрама 19,3 г/см3, а пеновольфрама – всего 3 г/см3. Такие материалы используют в качестве легких заполнителей и теплоизоляции в авиационной технике.
Конструкционные порошковые материалы. Спеченные стали. Типовыми порошковыми деталями являются кулачки, корпуса подшипников, ролики, звездочки распределительных валов, детали пишущих и вычислительных машин и другие. В основном это слабонагруженные детали, их изготавливают из порошка железа и графита. Средненагруженные детали изготавливают или двукратным прессованием – спеканием, или пропиткой спеченной детали медью или латунью. Детали сложной конфигурации (например, две шестерни на трубчатой оси) получают из отдельных заготовок, которые насаживают одну на другую с натягом и производят спекание. Для изготовления этой группы деталей используют смеси железо – медь – графит, железо – чугун, железо – графит – легирующие элементы.
Особое место занимают шестерни и поршневые кольца. Шестерни в зависимости от условий работы изготавливают из железо – графита или из железо – графита с медью или легирующими элементами. Снижение стоимости шестерни при переходе с нарезки зубьев на спекание порошка составляет 30…80 %. Пропитка маслом позволяет обеспечить самосмазываемость шестерни, уменьшить износ и снизить шум при работе.
Спеченные поршневые кольца изготавливают из смеси железного порошка с графитом, медью и сульфидом цинка (твердая смазка). Для повышения износостойкости делают двухслойные кольца: во внешний слой вводят хром и увеличивают содержание графита. Применение таких колец увеличивает пробег автомобильного двигателя, уменьшаеттего износ и сокращает расход масла.
Высоколегированные порошковые стали, содержащие 20 % хрома и 15 % никеля, используют для изготовления изделий, работающих в агрессивных средах.
Спеченные цветные металлы. Спеченный титан и его сплавы используют в виде полуфабрикатов (лист, трубы, пруток). Титановый каркас пропитывают магнием. Такие материалы хорошо обрабатываются давлением.
Широко используются материалы на основе меди, например, изготавливают бронзо – графитные шестерни. Свойства спеченных латуней выше, чем литых, из-за большей однородности химического состава и отсутствия посторонних включений.
Спеченные алюминиевые сплавы используют для изготовления поршней тяжело нагруженных двигателей внутреннего сгорания и других изделий, длительное время работающих при повышенных температурах, благодаря их повышенной жаропрочности и коррозионной стойкости.
Магнитные порошковые материалы. Различают магнитомягкие и магнитотвердые материалы.
Магнитомягкие – это материалы с большой магнитной проницаемостью и малой коэрцитивной силой, быстро намагничиваются и быстро теряют магнитные свойства при снятии магнитного поля. Основной магнитомягкий материал – чистое железо и его сплавы с никелем и кобальтом. Для повышения электросопротивления легируют кремнием, алюминием. Для улучшения прессуемости сплавов вводят до 1 % пластмассы, которая полностью испаряется при спекании. Пористость материалов должна быть минимальной.
Отдельно выделяется группа магнитодиэлектриков – это частицы магнитомягкого материала, разделенные тонким слоем диэлектрика – жидкого стекла или синтетической смолы. Таким материалам присущи высокое электросопротивление и минимальные потери на вихревые токи и на перемагничивание. Изготавливаются в результате смешивания, прессования и спекания, особенностью является то, что при нагреве частицы магнитного материала остаются изолированными и не меняют формы. За основу используют чистое железо, альсиферы.
Магнитотвердые материалы (постоянные магниты) – материалы с малой магнитной проницаемостью и большой коэрцитивной силой.
Магниты массой до 100 г изготавливают из порошковых смесей такого же состава, как литые магниты: железо – алюминий – никель (альни), железо – алюминий – никель – кобальт (алнико). После спекания этих сплавов обязательна термическая обработка с наложением магнитного поля.
Высокие магнитные свойства имеют магниты из сплавов редкоземельных металлов (церий, самарий, празеодим) с кобальтом.
6.3 Производство стали. Производство цветных металлов
Производство стали в электропечах. Плавильные электропечи имеют преимущества по сравнению с другими плавильными агрегатами:
а) легко регулировать тепловой процесс, изменяя параметры тока;
б) можно получать высокую температуру металла,
в) возможность создавать окислительную, восстановительную, нейтральную атмосферу и вакуум, что позволяет раскислять металл с образованием минимального количества неметаллических включений.
Электропечи используют для выплавки конструкционных, высоколегированных, инструментальных, специальных сплавов и сталей.
Различают дуговые и индукционные электропечи.
Разливка стали
Из плавильных печей сталь выпускают в ковш, который мостовым краном переносят к месту разливки стали. Из ковша сталь разливают в изложницы или кристаллизаторы машины для непрерывного литья заготовок. В изложницах или кристаллизаторах сталь затвердевает и получают слитки, которые подвергаются прокатке, ковке.
Изложницы – чугунные формы для изготовления слитков.
Изложницы выполняют с квадратным, прямоугольным, круглым и многогранным поперечными сечениями.
Слитки с квадратным сечением переделывают на сортовой прокат: двутавровые балки, швеллеры, уголки. Слитки прямоугольного сечения – на листы. Слитки круглого сечения используются для изготовления труб, колёс. Слитки с многогранным сечением применяют для изготовления поковок.
Спокойные и кипящие углеродистые стали разливают в слитки массой до 25 тонн, легированные и высококачественные стали – в слитки массой 0,5…7 тонн, а некоторые сорта высоколегированных сталей – в слитки до нескольких килограммов.
Сталь разливают в изложницы сверху, снизу (сифоном) и на машинах непрерывного литья.
Способы повышения качества стали. Улучшить качество металла можно уменьшением в нём вредных примесей, газов, неметаллических включений. Для повышения качества металла используют: обработку синтетическим шлаком, вакуумную дегазацию металла, электрошлаковый переплав (ЭШП), вакуумно-дуговой переплав (ВДП), переплав металла в электронно-дуговых и плазменных печах и т. д.
Вакуумная дегазация проводится для уменьшения содержания в металле газов и неметаллических включений.
Вакуумирование стали проводят в ковше, при переливе из ковша в ковш, при заливке в изложницу.
Для вакуумирования в ковше ковш с жидкой сталью помещают в камеру, закрывающуюся герметичной крышкой. Вакуумными насосами создают разрежение до остаточного давления 0,267…0,667 кПа. При понижении давления из жидкой стали выделяются водород и азот. Всплывающие пузырьки газов захватывают неметаллические включения, в результате чего содержание их в стали снижается. Улучшаются прочность и пластичность стали.
Электрошлаковый переплав (ЭШП) применяют для выплавки высококачественных сталей для подшипников, жаропрочны сталей.
Вакуумно-дуговой переплав (ВДП) применяют в целях удаления из металла газов и неметаллических включений.
Процесс осуществляется в вакуумно-дуговых печах с расходуемым электродом.
Производство меди. Медь в природе находится в виде сернистых соединений, оксидов, гидрокарбонатов, углекислых соединений в составе сульфидных руд и самородной металлической меди.
Наиболее распространенные руды – медный колчедан и медный блеск, содержащие 1…2 % меди.
90 % первичной меди получают пирометаллургическим способом, 10 % - гидрометаллургическим.
Гидрометаллургический способ–получение меди путём её выщелачивания слабым раствором серной кислоты и последующего выделения металлической меди из раствора.
Получение меди пирометаллургическимспособом состоит из обогащения, обжига, плавки на штейн, продувки в конвертере, рафинирования.
Обогащение медных руд производится методом флотации и окислительного обжига.
Метод флотации основан на использовании различной смачиваемости медьсодержащих частиц и пустой породы. Позволяет получать медный концентрат, содержащий 10…35 % меди.
Медные руды и концентраты, содержащие большие количества серы, подвергаются окислительному обжигу. После обжига руда и медный концентрат подвергаются плавке на штейн, представляющий собой сплав, содержащий сульфиды меди и железа. Штейн содержит 20…50 % меди, 20…40 % железа, 22…25 % серы, около 8 % кислорода и примеси никеля, цинка, свинца, золота, серебра.
Черновую медь рафинируют для удаления вредных примесей, проводят огневое, а затем электролитическое рафинирование.
Медь по чистоте подразделяется на марки: М0 (99,95% Cu), М1 (99,9%), М2(99,7%), М3 (99,5%), М4 (99%).
Производство магния. Для получения магния наибольшее распространение получил электролитический способ, сущность которого заключается в получении чистых безводных солей магния, электролизе этих солей в расплавленном состоянии и рафинировании металлического магния.
Основным сырьем для получения магния являются: карналлит, магнезит, доломит, бишофит. Наибольшее количество магния получают из карналлита. Сначала карналлит обогащают и обезвоживают. Безводный карналлит используют для приготовления электролита.
Электролиз осуществляют в электролизере, футерованном шамотным кирпичом. Анодами служат графитовые пластины, а катодами – стальные пластины.
7 Производство отливок
7.1 Заготовительное производство. Литейное производство
Наиболее широко для получения заготовок в машиностроении применяют следующие методы: литье, обработка металла давлением и сварка, а также комбинация этих методов. Каждый из методов содержит большое число способов получения заготовок.
Метод – это группа технологических процессов, в основе которых лежит единый принцип формообразования.
Литье – получение заготовок путем заливки расплавленного металла заданного химического состава в литейную форму, полость которой имеет конфигурацию заготовки.
Обработка давлением – технологические процессы, которые основаны на пластическом формоизменении металла.
Сварка – технологический процесс получения неразъемных соединений из металлов и сплавов в результате образования атомно-молекулярных связей между частицами соединяемых заготовок.
При выборе метода необходимо ориентироваться в первую очередь на материал и требования к нему с точки зрения обеспечения служебных свойств изделия (литье – чугун, стали с обозначением Л).
Основные факторы, влияющие на выбор способа получения заготовки. Характер производства. Для мелкосерийного и единичного производства характерно использование в качестве заготовок горячекатаного проката, отливок, полученных в песчано-глинистых формах, поковок, полученных ковкой.
В условиях крупносерийного и массового производств рентабельны способы получения заготовок: горячая объемная штамповка; литье в кокиль, под давлением, в оболочковые формы по выплавляемым моделям.
Материалы и требования, предъявляемые к качеству детали. Материалы должны обладать необходимым запасом определенных технологических свойств – ковкостью, штампуемостью, жидкотекучестью, свариваемостью, обрабатываемостью.
Размеры, масса и конфигурация детали. Удельная стоимость отливок и поковок растет с уменьшением их массы. Закономерность общая для всех способов получения заготовок и деталей, так как трудоемкость формообразования определяют общей площадью поверхностей, подлежащих обработке.
Размеры детали часто играют решающую роль. При литье по выплавляемым моделям, в кокиль, под давлением размеры отливки ограничены технологическими возможностями оборудования и инструмента.
Способом горячей объемной штамповки возможно получение поковок до 1000 кг.
Качество поверхности заготовок, обеспечение заданной точности. Использование точных способов обеспечивает достаточную чистоту поверхности и высокую точность заготовок.
Совершенствование ковки и штамповки обеспечивают параметры шероховатости и точность размеров, соответствующих механической обработке и даже финишных операций.
Калибровка, холодное выдавливание обеспечивают получение готовых деталей (заклепки, гайки, болты).
Литейное производство. Классификация литых заготовок. По условиям эксплуатации, независимо от способа изготовления, различают отливки:
– общего назначения – отливки для деталей, не рассчитываемых на прочность
– ответственного назначения – отливки для деталей, рассчитываемых на прочность и работающих при статических нагрузках;
– особо ответственного назначения ‑ отливки для деталей, рассчитываемых на прочность и работающих при циклических и динамических нагрузках.
В зависимости от способа изготовления, массы, конфигурации поверхностей, габаритного размера, толщины стенок, количества стержней, назначения и особых технических требований отливки делят на 6 групп сложности.
Первая группа характеризуется гладкими и прямолинейными наружными поверхностями с наличием невысоких усиливающих ребер, буртов, фланцев, отверстий. Внутренние поверхности простой формы. Типовые детали – крышки, рукоятки, диски, фланцы, муфты, колеса вагонеток, маховики для вентилей и т.д.
Шестая группа – отливки с особо сложными закрытыми коробчатыми и цилиндрическими формами. На наружных криволинейных поверхностях под различными углами пересекаются ребра, кронштейны и фланцы. Внутренние полости имеют особо сложные конфигурации с затрудненными выходами на поверхность отливки. Типовые детали – станины специальных МРС, сложные корпуса центробежных насосов, детали воздуходувок, рабочие колеса гидротурбин.
Литейные сплавы. Требования к материалам, используемым для получения отливок. Состав материалов должен обеспечивать получение в отливке заданных физико-механических и физико-химических свойств; свойства и структура должны быть стабильными в течение всего срока эксплуатации отливки.
Материалы должны обладать хорошими литейными свойствами (высокой жидкотекучестью, небольшой усадкой, низкой склонностью к образованию трещин и поглощению газов, герметичностью), хорошо свариваться, легко обрабатываться режущим инструментом. Они не должны быть токсичными и вредными для производства. Необходимо, чтобы они обеспечивали технологичность в условиях производства и были экономичными.
Литейные свойства сплавов. К основным литейным свойствам сплавов относят: жидкотекучесть, усадку сплавов, склонность к образованию трещин, газопоглощение, ликвацию.
Жидкотекучесть – способность расплавленного металла течь по каналам литейной формы, заполнять ее полости и четко воспроизводить контуры отливки.
Усадка – свойство металлов и сплавов уменьшать объем при охлаждении в расплавленном состоянии, в процессе затвердевания и в затвердевшем состоянии при охлаждении до температуры окружающей среды. Изменение объема зависит от химического состава сплава, температуры заливки, конфигурации отливки.
Различают объемную и линейную усадку.
Газопоглощение– способность литейных сплавов в расплавленном состоянии растворять водород, азот, кислород и другие газы.
Ликвация –неоднородность химического состава сплава в различных частях отливки. Различают ликвацию зональную и дендритную.
Представители литейных сплавов.
1. Чугун является наиболее распространенным материалом для получения фасонных отливок. Чугунные отливки составляют около 80 % всех отливок.
Широкое распространение чугун получил благодаря хорошим технологическим свойствам и относительной дешевизне. Из серого чугуна получают самые дешевые отливки (в 1,5 раза дешевле, чем стальные, в несколько раз – чем из цветных металлов). Область применения чугунов расширяется вследствие непрерывного повышения его прочностных и технологических характеристик. Используют серые, высокопрочные, ковкие и легированные чугуны.
2. Сталь как литейный материал применяют для получения отливок деталей, которые наряду с высокой прочностью должны обладать хорошими пластическими свойствами. Чем ответственнее машина, тем более значительна доля стальных отливок, идущих на ее изготовление. Стальное литье составляет: в тепловозах – 40…50 % от массы машины; в энергетическом и тяжелом машиностроении (колеса гидравлических турбин с массой 85 тонн, иногда несколько сотен тонн) – до 60 %.
Стальные отливки после соответствующей термической обработки не уступают по механическим свойствам поковкам.
Используются: углеродистые стали 15Л…55Л; легированные стали 25ГСЛ, 30ХГСЛ, 110Г13Л; нержавеющие стали 10Х13Л, 12Х18Н9ТЛ и др.
Среди литейных материалов из сплавов цветных металлов широкое применение нашли медные и алюминиевые сплавы.
1. Медные сплавы – бронзы и латуни.
Латуни – наиболее распространенные медные сплавы. Для изготовления различной аппаратуры для морских судостроения, работающей при температуре 300 ?С, втулок и сепараторов подшипников, нажимных винтов и гаек прокатных станов, червячных винтов применяют сложнолегированные латуни. Обладают хорошей износостойкостью, антифрикционными свойствами, коррозионной стойкостью.
Из оловянных бронз (БрО3Ц7С5Н1) изготавливают арматуру, шестерни, подшипники, втулки.
Безоловянные бронзы по некоторым свойствам превосходят оловянные. Они обладают более высокими механическими свойствами, антифрикционными свойствами, коррозионной стойкостью. Однако литейные свойства их хуже. Применяют для изготовления гребных винтов крупных судов, тяжело нагруженных шестерен и зубчатых колес, корпусов насосов, деталей химической и пищевой промышленности.
2. Алюминиевые сплавы.
Отливки из алюминиевых сплавов составляют около 70 % цветного литья. Они обладают высокой удельной прочностью, высокими литейными свойствами, коррозионной стойкостью в атмосферных условиях.
Наиболее высокими литейными свойствами обладают сплавы системы алюминий – кремний (Al-Si) – силумины АЛ2, АЛ9. Они широко применяются в машиностроении, автомобильной и авиационной промышленности, электротехнической промышленности.
Также используются сплавы систем: алюминий – медь, алюминий – медь – кремний, алюминий – магний.
3. Магниевые сплавы обладают высокими механическими свойствами, но их литейный свойства невысоки. Сплавы системы магний – алюминий – цинк – марганец применяют в приборостроении, в авиационной промышленности, в текстильном машиностроении.
7.2 Способы изготовления отливок. Изготовление отливок в песчаных формах
Изготовление отливок в песчаных формах. Литье в песчаные формы является самым распространенным способом изготовления отливок. Изготавливают отливки из чугуна, стали, цветных металлов от нескольких грамм до сотен тонн, с толщиной стенки от 3…5 до 1000 мм и длиной до 10000 мм.
Схема технологического процесса изготовления отливок в песчаных формах представлена на рисунке 7.1.
Сущность литья в песчаные формы заключается в получении отливок из расплавленного металла, затвердевшего в формах, которые изготовлены из формовочных смесей путем уплотнения с использованием модельного комплекта.
Рисунок 7.1 ‑ Схема изготовления отливок в песчаных формах
Литейная форма обычно состоит из верхней 3 и нижней 1 полуформ, которые получают уплотнением формовочной смеси, состоящей главным образом из кварцевого песка и огнеупорной глины, вокруг соответствующих частей (верхней или нижней) деревянной или металлической модели в специальных металлических рамках ‑ опоках. Модель отличается от отливки не только размерами, но и наличием знаковых частей, предназначенных для установки стержня 7, образующего внутреннюю полость отливки (отверстия). Стержни изготовляют из смеси, например, кварцевого песка, отдельные зерна которого скрепляются при сушке или химическом твердении специальными крепителями (связующими). В верхней и частично нижней полуформе размещают модели элементов литниковой системы, предназначенной для заполнения расплавом 5 из разливочного ковша 6 рабочей полости формы. После засыпки и уплотнения формовочной смеси в опоках из полученных полуформ извлекают модели отливки, элементы литниковой системы и прибылей (или выпоров 4). Затем в нижнюю полуформу 1 устанавливают стержень 7 и накрывают верхней полуформой 3. Необходимая точность сборки формы обеспечивается штырями и втулками в цапфах 2 (или приливах) опок. В современных литейных цехах многие операции при изготовлении песчаной формы выполняются на машинах, например уплотнение смеси, извлечение моделей из полуформ, установка стержней, сборка форм и т.п. Перед заливкой во избежание поднятия верхней полуформы заливаемым расплавом опоки скрепляют друг с другом специальными скобами или на верхнюю опоку устанавливают груз. При заливке из полости формы вытесняются воздух и газы через вентиляционные каналы и выпоры 4.
Литейную форму заливают расплавленным металлом через литниковую систему. Литниковая система – совокупность каналов и резервуаров, по которым расплав поступает из разливочного ковша в полость формы. Различают литниковые системы с питателями, расположенными в горизонтальной и вертикальной плоскостях. По способу подвода расплава в рабочую полость формы литниковые системы делят на: нижнюю, верхнюю, боковую.
После затвердевания отливки песчано-глинистую форму подают на выбивку, где ее разрушают и извлекают отливку. Затем из отливки удаляют стержень, отрезают от нее элементы литниковой системы и прибыли. Поверхность отливки очищают от пригоревшей формовочной и стержневой смесей и заусенцев. Для снятия внутренних напряжений, получения заданных структуры и механических свойств отливки подвергают термической обработке. После очистки и окраски их отправляют на склад или в механический цех.
Приготовление формовочных и стержневых смесей. Для приготовления смесей используются природные и искусственные материалы.
Песок – основной компонент формовочных и стержневых смесей. Глина является связующим веществом, обеспечивающим прочность и пластичность, обладающим термической устойчивостью. Широко применяют бентонитовые или каолиновые глины.
Для предотвращения пригара и улучшения чистоты поверхности отливок используют противопригарные материалы: для сырых форм – припылы; для сухих форм – краски.
Смеси должны обладать рядом свойств.
Прочность – способность смеси обеспечивать сохранность формы без разрушения при изготовлении и эксплуатации.
Поверхностная прочность (осыпаемость) – сопротивление истирающему действию струи металла при заливке.
Пластичность – способность воспринимать очертание модели и сохранять полученную форму.
Податливость – способность смеси сокращаться в объеме под действием усадки сплава.
Текучесть – способность смеси обтекать модели при формовке, заполнять полость стержневого ящика.
Термохимическая устойчивость или непригарность – способность выдерживать высокую температуру сплава без оплавления или химического с ним взаимодействия.
Негигроскопичность – способность после сушки не поглощать влагу из воздуха.
Долговечность – способность сохранять свои свойства при многократном использовании.
По характеру использования различают облицовочные, наполнительные и единые смеси.
Облицовочная – используется для изготовления рабочего слоя формы. Содержит повышенное количество исходных формовочных материалов и имеет высокие физико-механические свойства.
Наполнительная – используется для наполнения формы после нанесения на модель облицовочной смеси. Приготавливается путем переработки оборотной смеси с малым количеством исходных формовочных материалов.
Облицовочная и наполнительная смеси необходимы для изготовления крупных и сложных отливок.
Единая – применяется одновременно в качестве облицовочной и наполнительной. Используют при машинной формовке и на автоматических линиях в серийном и массовом производстве. Изготавливается из наиболее огнеупорных песков и глин с наибольшей связующей способностью для обеспечения долговечности.
Приготовление формовочных смесей. Сначала подготавливают песок, глину и другие исходные материалы. Песок сушат и просеивают. Глину сушат, размельчают, размалывают в шаровых мельницах или бегунах и просеивают. Аналогично получают угольный порошок.
Подготавливают оборотную смесь. Оборотную смесь после выбивки из опок разминают на гладких валках, очищают от металлических частиц в магнитном сепараторе и просеивают.
Приготовление формовочной смеси включает несколько операций: перемешивание компонентов смеси, увлажнение и разрыхление.
Перемешивание осуществляется в смесителях-бегунах с вертикальными или горизонтальными катками. Песок, глину, воду и другие составляющие загружают при помощи дозатора, перемешивание осуществляется под действием катков и плужков, подающих смесь под катки.
Готовая смесь выдерживается в бункерах-отстойниках в течение 2…5 часов, для распределения влаги и образования водных оболочек вокруг глинистых частиц.
Готовую смесь разрыхляют в специальных устройствах и подают на формовку.
Стержневая смесь. Стержневые смеси соответствуют условиям технологического процесса изготовления литейных стержней, которые испытывают тепловые и механические воздействия. Они должны иметь боле высокие огнеупорность, газопроницаемость, податливость, легко выбиваться из отливки.
Огнеупорность – способность смеси и формы сопротивляться растяжению или расплавлению под действием температуры расплавленного металла.
Газопроницаемость – способность смеси пропускать через себя газы (песок способствует ее повышению).
В зависимости от способа изготовления стержней смеси разделяют: на смеси с отвердением стержней тепловой сушкой в нагреваемой оснастке; жидкие самотвердеющие; жидкие холоднотвердеющие смеси на синтетических смолах; жидкостекольные смеси, отверждаемые углекислым газом.
Приготовление стержневых смесей осуществляется перемешиванием компонентов в течение 5…12 минут с последующим выстаиванием в бункерах.
В современном литейном производстве изготовление смесей осуществляется на автоматических участках.
Модельный комплект – приспособления, включающие литейную модель, модели литниковой системы, стержневые ящики, модельные плиты, контрольные и сборочные шаблоны.
Литейная модель – приспособление, с помощью которого в литейной форме получают отпечаток, соответствующий конфигурации и размерам отливки.
Применяют модели разъемные и неразъемные, деревянные, металлические и пластмассовые.
Размеры модели больше размеров отливки на величину линейной усадки сплава.
Модели деревянные (сосна, бук, ясень), лучше изготавливать не из целого куска, а склеивать из отдельных брусочков с разным направлением волокон, для предотвращения коробления.
Достоинства: дешевизна, простота изготовления, малый вес. Недостаток: недолговечность.
Для лучшего удаления модели из формы ее окрашивают: чугун – красный, сталь – синий.
Изготовление литейных форм. Ручная формовка применяется для получения одной или нескольких отливок в условиях опытного производства, в ремонтном производстве, для крупных отливок массой 200…300 тонн.
Приемы ручной формовки: в парных опоках по разъемной модели; формовка шаблонами; формовка в кессонах.
Машинная формовка используется в массовом и серийном производстве, а также для мелких серий и отдельных отливок.
Повышается производительность труда, улучшается качество форм и отливок, снижается брак, облегчаются условия работы.
По характеру уплотнения различают машины: прессовые, встряхивающие и другие.
Уплотнение прессованием может осуществляться по различным схемам, выбор которой зависит от размеров формы моделей, степени и равномерности уплотнения и других условий.
Вакуумная формовка. Модельная плита имеет вакуумную полость. В модели имеются сквозные отверстия диаметром 0,5…1 мм, совпадающие с отверстиями в плите. Модельную плиту с моделью закрывают нагретой полимерной пленкой. В воздушной коробке насосами создается вакуум 40…50 кПа. Затем устанавливается опока с сухим кварцевым песком, который уплотняется с помощью вибраций.
На верхнюю поверхность помещают разогретую пленку, плотно прилегающую к опоке. Полуформу снимают с модели. При заливке металла пленка сгорает, образуя противопригарное покрытие.
Изготовление стержней. Изготовление стержней осуществляется вручную или на специальных стержневых машинах из стержневых смесей.
Изготовление стержней включает операции: формовка сырого стержня, сушка, окраска сухого стержня. Если стержень состоит из нескольких частей, то после сушки их склеивают.
Приготовление расплава. Приготовление литейных сплавов связано с плавлением различных материалов. Для получения заданного химического состава и определенных свойств, в сплав в жидком или твердом состоянии вводят специальные легирующие элементы: хром, никель, марганец, титан и др.
Для плавления чугуна и стали, в качестве исходных материалов применяют литейные или передельные доменные чугуны, чугунный и стальной лом, отходы собственного производства, а также для понижения температуры плавления и образования шлаков – флюсы (известняк).