Термическое (вакуумное) напыление
Принцип этого метода напыления показан на рисунке 3.7а. Металлический или стеклянный колпак 1 расположен на опорной плите 2.Между ними находится прокладка 3, обеспечивающая поддержание вакуума после откачки воздуха из подколпачного пространства. Подложка 4,на которую проводится напыление, закреплена на держателе 5. К держателю примыкает нагреватель 6 (напыление проводится на нагретую подложку). Испаритель 7 включает в себя нагреватель и источник напыляемого вещества. Поворотная заслонка 8перекрывает поток паров от испарителя к подложке: напыление длится в течение времени, когда заслонка открыта.
Нагреватель обычно представляет собой нить или спираль из тугоплавкого металла (вольфрам, молибден и др.), через которую пропускается достаточно большой ток. Источник напыляемого вещества связывается с нагревателем по-разному: в виде скобок («гусариков»), навешиваемых на нить накала; в виде небольших стержней, охватываемых спиралью, в виде порошка, засыпанного в
а) | б) | в) |
Рисунок 3.7
тигель, нагреваемый спиралью, и т. п. Вместо нитей накала в последнее время используют нагрев с помощью электронного луча или луча лазера.
На подложке создаются наиболее благоприятные условия для конденсации паров, хотя частично конденсация происходит и на стенках колпака. Слишком низкая температура подложки препятствует равномерному распределению адсорбируемых атомов: они группируются в «островки» разной толщины, часто не связанные друг с другом. Наоборот, слишком высокая температура подложки приводит к отрыву только что осевших атомов, к их «реиспарению». Поэтому для получения качественной пленки температура подложки должна лежать в некоторых оптимальных пределах (обычно 200-400° С). Скорость роста пленок в зависимости от ряда факторов ( температура подложки, расстояние от испарителя до подложки, тип напыляемого материала и др.) лежит в пределах от десятых долей до десятков нанометров в секунду.
Прочность связи - сцепления пленки с подложкой или другой пленкой - называется адгезией.Некоторые распространенные материалы (например, золото) имеют плохую адгезию с типичными подложками, в том числе с кремнием. В таких случаях на подложку сначала наносят так называемый подслой,характерный хорошей адгезией, а затем на него напыляют основной материал, у которого адгезия с подслоем тоже хорошая. Например, для золота подслоем могут быть никель или титан.
Для того чтобы атомы напыляемого материала, летящие от испарителя к подложке, испытывали минимальное количество столкновений с атомами остаточного газа и тем самым минимальное рассеяние, в подколпачном простран- стве нужно обеспечивать достаточно высокий вакуум. Критерием необходи- мого вакуума может служить условие, чтобы средняя длина свободного пробега атомов в несколько раз превышала расстояние между испарителем и подлож-кой. Однако этого условия часто недостаточно, так как любое количество остаточного газа чревато загрязнением напыляемой пленки и изменением ее свойств. Поэтому в принципе вакуум в установках термического напыления должен быть как можно более высоким. В настоящее время вакуум ниже 10-6 мм рт. ст. считается неприемлемым, а в ряде первоклассных напылительных установок он доведен до 10-11 мм рт. ст.
Главными достоинствами рассмотренного метода являются его простота и возможность получения исключительно чистых пленок (при высоком вакууме). Однако у него есть и серьезные недостатки: трудность напыления тугоплавких материалов и трудность (а иногда невозможность) воспроизведения на подложке химического состава испаряемого вещества. Последнее объясняется тем, что при высокой температуре химические соединения диссоциируют, а их составляющие конденсируются на подложке раздельно. Естественно, имеется вероятность того, что новая комбинация атомов на подложке не будет соответствовать структуре исходной молекулы.
Катодное напыление.
Схема этого метода показана на рисунке 3.7б. Здесь большинство компонентов те же, что и на рисунке 3.7а. Однако отсутствует испаритель; его место по расположению (и по функции) занимает катод 6, который либо состоит из напыляемого вещества, либо электрически контактирует с ним. Роль анода выполняет подложка вместе с держателем.
Подколпачное пространство сначала откачивают до 10-5-10-6 мм рт. ст., а затем в него вводят некоторое количество очищенного нейтрального газа (чаще всего аргона), так что создается давление 10-1 - 10-2 мм рт, ст. При подаче высокого отрицательного (2-3 кВ) напряжения на катод 6 (анод заземлен из соображений электробезопасности) в пространстве анод - катод возникает аномальный тлеющий разряд, сопровождающийся образованием электронно-ионной плазмы.
Специфика аномального тлеющего разряда состоит в том, что в прикатодном пространстве образуется настолько сильное электрическое поле, что положительные ионы газа, ускоряемые этим полем и бомбардирующие катод, выбивают из него не только электроны (необходимые для поддержания разряда), но и нейтральные атомы. Тем самым катод постепенно разрушается. В обычных газоразрядных приборах разрушение катода недопустимо (поэтому в них используется нормальный тлеющий разряд), но в данном случае выбивание атомов из катода является полезным процессом, аналогичным испарению.
Важным преимуществом катодного напыления по сравнению с термичес- ким является то, что распыление катода не связано с высокой температурой. Соответственно отпадают трудности при напылении тугоплавких материалов и химических соединений (см. последний абзац предыдущего раздела).
Однако в данном методе катод (т. е. напыляемый материал), будучи элементом газоразрядной цепи, должен обладать высокой электропроводностью. Такое требование ограничивает ассортимент напыляемых материалов. В частности, оказывается невозможным напыление диэлектриков, в том числе многих окислов и других химических соединений, распространенных в технологии полупроводниковых приборов.
Это ограничение в значительной мере устраняется при использовании так называемого реактивного (или химического)катодного напыления, особенность которого состоит в добавлении к основной массе инертного газа небольшого количества активных газов, способных образовывать необходимые химические соединения с распыляемым материалом катода. Например, примешивая к аргону кислород, можно вырастить на подложке пленку окисла. Примешивая азот или моноокись углерода, можно получить нитриды или карбиды соответствующих металлов. В зависимости от парциального давления активного газа химическая реакция может происходить либо на катоде (и тогда на подложке осаждается уже готовое соединение), либо на подложке - аноде.
Недостатками катодного напыления в целом являются некоторая загрязненность пленок (из-за использования сравнительно низкого вакуума) меньшая по сравнению с термическим методом скорость напыления (по той же причине), а также сложность контроля процессов.