Материалы с особыми технологическими свойствами

1. Технологические свойства металлов.

Технологические свойства металлов и сплавов характеризуют их способность поддаваться различным методам горячей и холодной обработки для получения определённой формы, размеров и свойств.

К технологическим свойствам металлов и сплавов относятся литейные свойства, ковкость, свариваемость , обрабатываемость режущими инструментами, прокаливаемость.

Обрабатываемостью резанием называется способность металлов подвергаться обработке режущими инструментами для придания деталям определённой формы, размеров ( с необходимой точностью) и чистоты поверхности. Обрабатываемость резанием определяется по скорости резания, усилию резания и по чистоте обрабатываемой поверхности. При разных методах обработки ( точении, сверлении, фрезеровании, шлифовании…) обрабатываемость одно и того же металла может быть различной.

Обрабатываемость сталей зависит от их структуры и химического состава. Крупнозернистая сталь из-за пониженной вязкости лучше обрабатывается резанием, чем мелкозернистая. Обрабатываемость углеродистых сталей ухудшается с увеличением содержания в них углерода.

Для улучшения обрабатываемости сталей в них допускается повышенное содержание серы, а также вводится свинец, селен, другие элементы.

Свариваемостью называется свойство металла или сплава образовывать при установленной технологии сварки соединения, отвечающие требованиям, обусловленным конструкцией и эксплуатацией изделия.

Свариваемость углеродистых сталей ухудшается с повышением в них содержания углерода. Хорошей свариваемостью обладают низкоуглеродистые и среднеуглеродистые стали.

Ковкостью называется способность металла без разрушения поддаваться обработке давлением ( ковке, штамповке, прокатке,….). Ковкость металла зависит от его пластичности. Чем металл более пластичен, тем лучше он поддаётся обработке давлением.

Металлы обладают ковкостью как в холодном, так и в нагретом состоянии. В холодном хорошо куются латуни и сплавы алюминия, сталь - в нагретом состоянии. Чугун из-за повышенной хрупкости обработке давлением не подвергается.

Прокаливаемость - способность стали воспринимать закалку на определённую глубину от поверхности. Прокаливаемость стали определяется по виду излома, по изменению твёрдости в различных точках сечения образца, а также методом торцовой закалки.

Литейные свойства определяются жидкотекучестью, усадкой, склонностью к ликвации. При выборе литейных материалов учитывают, что чугун обладает высокими литейными свойствами: хорошей жидкотекучестью, небольшой усадкой и незначительной склонностью к ликвации. Литейные свойства сталей хуже, чем чугуна.

Контрольные вопросы.

1. Что называется обрабатываемостью металлов резанием и чем она характеризуется?

2. Как величина кристаллитов (зёрен) сталей влияет на их обрабатываемость резанием?

3. Как зависит обрабатываемость резанием от твёрдости металлов?

4. Что называется свариваемостью и ковкостью металлов?

5. Для чего перед обработкой давлением производится нагрев металла?

6. Как влияет химический состав углеродистой стали на её обрабатываемость резанием, свариваемость и ковкость?

7. Что понимается под прокаливаемостью стали и как она определяется?

8. Чем характеризуются литейные свойства металлов?

Высокопрочные, пружинные, шарикоподшипниковые, износостойкие и автоматные стали

Высокопрочные стали.

Высокопрочными называют стали, имеющие предел прочности более 1500 МПа, который достигается подбором химического состава и оптимальной термической обработки.

Такой уровень прочности можно получить в среднеуглеродистых легированных сталях, (30ХГСН2А,40ХН2МА), применяя закалку с низким отпуском (при температуре 200…250oС) или изотермическую закалку с получением структуры нижнего бейнита.

После изотермической закалки среднеуглеродистые легированные стали имеют несколько меньшую прочность, но большую пластичность и вязкость. Поэтому они более надежны в работе, чем закаленные и низкоотпущенные.

При высоком уровне прочности закаленные и низкоотпущенные среднеуглеродистые стали обладают повышенной чувствительностью к концентраторам напряжения, склонностью к хрупкому разрушению, поэтому их рекомендуется использовать для работы в условиях плавного нагружения.

Легирование вольфрамом, молибденом, ванадием затрудняет разупрочняющие процессы при температуре 200…300 oС, способствует получению мелкого зерна, понижает порог хладоломкости, повышает сопротивление хрупкому разрушению.

Высокая прочность может быть получена и за счет термомеханической обработки.

Стали 30ХГСА, 38ХН3МА после низкотемпературной термомеханической обработки имеют предел прочности 2800 МПа, относительное удлинение и ударная вязкость увеличиваются в два раза по сравнению с обычной термической обработкой. Это связано с тем, что частичное выделение углерода из аустенита при деформации облегчает подвижность дислокаций внутри кристаллов мартенсита, что способствует увеличению пластичности.

Мартенситно-стареющие стали (03Н18К9М5Т, 04Х11Н9М2Д2ТЮ) превосходят по конструкционной прочности и технологичности среднеуглеродистые легированные стали. Они обладают малой чувствительностью к надрезам, высоким сопротивлением хрупкому разрушению и низким порогом хладоломкости при прочности около 2000 МПа.

Мартенситно-стареющие стали представляют собой безуглеродистые сплавы железа с никелем (8..25 %), дополнительно легированные кобальтом, молибденом, титаном, алюминием, хромом и другими элементами. Благодаря высокому содержанию никеля, кобальта и малой концентрации углерода в результате закалки в воде или на воздухе фиксируется высокопластичный, но низкопрочный железоникелевый мартенсит, пересыщенный легирующими элементами. Основное упрочнение происходит в процессе старения при температуре 450…550 oС за счет выделения из мартенситной матрицы когерентно с ней связанных мелкодисперсных фаз. Мартенситно-стареющие стали обладают высокой конструкционной прочностью в интервале температур от криогенных до 500 oС и рекомендуются для изготовления корпусов ракетных двигателей, стволов артиллерийского и стрелкового оружия, корпусов подводных лодок, батискафов, высоконагруженных дисков турбомашин, зубчатых колес, шпинделей, червяков и т.д.

Пружинные стали.

Пружины, рессоры и другие упругие элементы являются важнейшими деталями различных машин и механизмов. В работе они испытывают многократные переменные нагрузки. Под действием нагрузки пружины и рессоры упруго деформируются, а после прекращения действия нагрузки восстанавливают свою первоначальную форму и размеры. Особенностью работы является то, что при значительных статических и ударных нагрузках они должны испытывать только упругую деформацию, остаточная деформация не допускается. Основные требования к пружинным сталям – обеспечение высоких значений пределов упругости, текучести, выносливости, а также необходимой пластичности и сопротивления хрупкому разрушению, стойкости к релаксации напряжений.

Пружины работают в области упругих деформаций, когда между действующим напряжением и деформацией наблюдается пропорциональность. При длительной работе пропорциональность нарушается из-за перехода части энергии упругой деформации в энергию пластической деформации. Напряжения при этом снижаются.

Самопроизвольное снижение напряжений при постоянной суммарной деформации называется релаксацией напряжений.

Релаксация приводит к снижению упругости и надежности работы пружин.

Пружины изготавливаются из углеродистых (65, 70) и легированных (60С2, 50ХГС, 60С2ХФА, 55ХГР) конструкционных сталей.

Для упрочнения пружинных углеродистых сталей применяют холодную пластическую деформацию посредством дробеструйной и гидроабразивной обработок, в процессе которых в поверхностном слое деталей наводятся остаточные напряжения сжатия.

Повышенные значения предела упругости получают после закалки со средним отпуском при температуре 400…480 oС.

Для сталей, используемых для пружин, необходимо обеспечить сквозную прокаливаемость, чтобы получить структуру троостита по всему сечению.

Упругие и прочностные свойства пружинных сталей достигаются при изотермической закалке.

Пружинные стали легируют элементами, которые повышают предел упругости – кремнием, марганцем, хромом, вольфрамом, ванадием, бором.

В целях повышения усталостной прочности не допускается обезуглероживание при нагреве под закалку и требуется высокое качество поверхности.

Пружины и другие элементы специального назначения изготавливают из высокохромистых мартенситных (30Х13), мартенситно-стареющих (03Х12Н10Д2Т), аустенитных нержавеющих (12Х18Н10Т), аустенито-мартенситных (09Х15Н8Ю), быстрорежущих (Р18) и других сталей и сплавов.

Наши рекомендации