Расчет энергопотребления
При проектировании домашней фотоэлектрической системы сначала нужно составить список всех электроприборов в доме, выяснить их потребляемую мощность и внести в список.
В таблице внизу даны для справки данные о средней потребляемой мощности некоторых приборов. Однако необходимо помнить, что это всего лишь приблизительные оценки. Чтобы рассчитать потребляемую мощность (E) системы с инвертором (для приборов переменного тока), нужно внести поправку (умножить среднее потребление на коэффициент C, чтобы получить общую мощность).
Прибор | Потребляемая мощность, Вт | C | Общая потребность в электроэнергии, Вт |
Флуоресцентные лампы | 1,5 | ||
Радио/ магнитофон, 6В | 2/8 | 2,0 | 4/16 |
Радиоприемник/ магнитофон, 12В | 8/12 | 1,0 | 8/12 |
Небольшой ч/б телевизор | 1,0 |
Для работы других электроприборов - холодильника, утюга, вентилятора, электроплитки и т.д. - понадобится система большего размера и дороже. Так как эти системы не подчиняются единым стандартам, а зависят от конкретных нужд потребителя, расчет должен выполняться специалистом.
Во-вторых, нужно оценить, сколько времени в течение дня используются те или другие электроприборы. К примеру, лампочка в гостиной горит 10 часов в сутки, а в кладовой - только 10 минут. Запишите эти данные во вторую колонку в следующей таблице. Потом составьте третью колонку, в которую впишите ежедневную потребность в энергии. Чтобы ее определить, нужно умножить мощность прибора на время его работы, например: 27 Вт x 4 часа = 108 Вт·ч. Запишите полученное число в третью колонку - это и есть ваше общее энергопотребление в день.
ПРИБОР | Мощность, Вт | Кол-во часов работы в день | Энергопотребление в день, Вт·ч |
Флуор. лампа | |||
Флуор. лампа | |||
Флуор. лампа | 0,5 | 13,5 | |
Радиоприемник 6В | |||
Телевизор | |||
Вентилятор | |||
Всего |
Далее необходимо определить количество солнечной энергии, на которое можно рассчитывать в данной местности. Обычно эти данные можно получить у местного поставщика солнечных батарей или на гидрометеостанции. Важно учитывать два фактора: среднегодовую солнечную радиацию, а также ее среднемесячные значения при наихудших погодных условиях (см. общие сведения в главе "Солнечная радиация").
С помощью первого значения фотоэлектрическую систему можно отрегулировать в соответствии со среднегодовой солнечной радиацией, то есть в некоторые месяцы будет больше энергии, чем требуется, а в другие - меньше. Если вы руководствуетесь второй цифрой, у вас всегда будет как минимум достаточно энергии для удовлетворения ваших потребностей, кроме разве что чрезвычайно продолжительных периодов плохой погоды.
Теперь можно подсчитать номинальную мощность фотоэлектрического модуля. Умножьте значение энергопотребления (Вт·ч в день) на коэффициент 1,7 для поправки на потери энергии в системе, потом разделите на величину солнечной радиации (Вт·ч в день), напр., 280 (Вт·ч/день) x 1,7/ 5 (Вт·ч/день) = 96,2 Вт. К сожалению, выбор номинальной мощности фотоэлектрических модулей ограничен. Используя 50-ваттные модули, можно построить генератор мощностью 50 Вт, 100 Вт, 150 Вт и т.д. Если потребность в энергии составляет 95 Вт, лучше всего ей соответствует система из двух модулей. Если же общая мощность модулей сильно отличается от вашей расчетной величины, придется пользоваться либо недостаточно мощным, либо слишком мощным генератором. В первом случае фотобатарея не сможет удовлетворить общую потребность в энергии. Вам решать, устроит ли вас частичное обеспечение ваших потребностей. Во втором случае у вас будет избыток электроэнергии.
Определение размера батареи зависит от потребности в энергии и от количества фотоэлектрических модулей. В приведенном примере минимальная емкость батареи составит 60 ампер-час (А·ч), а оптимальная - 100 А·ч. Такая батарея сможет сохранять 1200 Вт·ч при 12 В. Этого достаточно для электроснабжения в описанном выше случае, когда дневное потребление энергии составляет 280 Вт·ч.
ПОСТОЯННОЕ НАПРЯЖЕНИЕ
В прошлом почти во всех фотоэлектрических системах использовалось постоянное напряжение 12 В. Широко применялись приборы на 12 В, питавшиеся прямо от батареи. Теперь, с появлением эффективных и надежных инверторов, все чаще в аккумуляторах используется напряжение 24 В. В настоящее время напряжение электрической системы определяется дневным поступлением энергии в течение дня. Системы, производящие и потребляющие менее 2000 Вт·ч в день, лучше всего сочетаются с напряжением в 12 В. Системы, производящие 2000--6000 Вт·ч в день, обычно используют напряжение 24 В. Системы, производящие более 6000 Вт·ч в день, используют 48 В.
Напряжение в сети - это очень важный фактор, который влияет на параметры инвертора, средств управления, зарядного устройства и электропроводки. Однажды купив все эти компоненты, их трудно заменить. Некоторые компоненты системы, например, фотомодули, можно переключить с 12 В на более высокое напряжение, другие - инвертор, проводка и средства контроля - предназначены для определенного напряжения и могут работать только в его рамках.
АККУМУЛЯТОР
В аккумуляторе накапливается энергия, выработанная солнечным модулем. В качестве компонента домашней солнечной энергетической установки, аккумулятор выполняет три задачи:
· Покрывает пиковую нагрузку, которую не могут покрыть сами фотоэлектрические модули (резервный запас).
· Дает энергию в ночное время (кратковременное хранение).
· Компенсирует периоды плохой погоды или слишком высокого энергопотребления (среднесрочное хранение).
Наиболее часто используются автомобильные аккумуляторы, доступные по цене и имеющиеся во всем мире. Однако они предназначены для передачи большого тока в течение короткого промежутка времени. Они плохо выдерживают продолжительные циклы зарядки-разрядки, типичные для солнечных систем. Промышленность выпускает т.н. солнечные аккумуляторы, которые отвечают данным требованиям. Их главная особенность - низкая чувствительность к работе в циклическом режиме.
К сожалению, лишь в немногих развивающихся странах производятся такие батареи, а импортные стоят слишком дорого из-за стоимости перевозки и таможенных сборов. В такой ситуации можно использовать мощные аккумуляторы для грузовиков - это более доступный вариант, хотя и менять их придется чаще.
Для большой фотоэлектрической системы емкости одного аккумулятора может оказаться недостаточно. Тогда можно параллельно подключить несколько аккумуляторов, соединив все положительные и все отрицательные полюса между собой. Для подключения нужно использовать толстую медную проволоку, желательно не длиннее 30 см. При зарядке аккумулятор выделяет потенциально взрывоопасные газы. Поэтому нужно остерегаться открытого огня. Однако выделение газов незначительное, особенно если используется регулятор заряда; так что риск не превышает обычного, связанного с использованием аккумулятора в автомашине. И все же аккумуляторы нуждаются в хорошей вентиляции. Поэтому не стоит накрывать их и прятать в ящики.
Емкость аккумулятора указывается в ампер-часах. К примеру, аккумулятор на 100 А·ч и 12 В может сохранять 1200 Вт·ч (12 В x 100 А·ч). Однако емкость зависит от продолжительности процесса зарядки или разрядки. Период подзарядки указывают как индекс емкости C, например, "C100" для 100 часов. Отметим, что производители могут изготавливать аккумуляторы для разных базовых периодов.
При хранении энергии в аккумуляторе определенное ее количество в процессе хранения теряется. Эффективность автомобильных батарей составляет около 75%, тогда как солнечные аккумуляторы имеют несколько лучшие показатели. Часть емкости аккумулятора теряется при каждом цикле заряд-разряд, пока не снижается настолько, что его приходится заменять. Солнечные аккумуляторы служат дольше, чем мощные автомобильные, срок службы которых составляет 2-3 года.