Назначение. Принцип работы

Двухпозиционный контроллер - самый простой и имеет некоторые важные преимущества.

Он экономичный, простой конструкции и не требует никакой настройки параметров. Если колебания не будут мешать работе системы, и если не нужна настройка параметров контроллера, двухпозиционный регулятор является хорошим решением.

Кроме того, если приводы работают только в двух режимах (включено- выключено), то двухпозиционный контроллер почти всегда используется с такими приводами. Пэтому On-offконтроллеры часто используются в бытовой технике (холодильники, стиральные машины и т.д.) и в перерабатывающей промышленности, когда требования по контролю качества невысокие (контроль температуры в помещениях и т.д.).

Двухпозиционные регуляторы обеспечивают хорошее качество регулирования для инерционных объектов с малым запаздыванием, не требуют настройки и просты в эксплуатации. Эти регуляторы представляют обычный и наиболее широко распространенный метод регулирования.

Двухпозиционные регуляторы используются для управления переключательными элементами - дискретными исполнительными устройствами:

  • электромеханическими реле,
  • контакторами,
  • транзисторными ключами,
  • симисторными или тиристорными устройствами,
  • твердотельными реле и др.

В простейшем случае (без обратной связи) двухпозиционный регулятор работает как двухпозиционный переключатель. Например, мощность, подаваемая на нагреватель, имеет только два значения - максимальное и минимальное (нулевое), две позиции (отсюда и название регулятора - двухпозиционный) - нагреватель полностью включен или полностью выключен. Структурная схема двухпозиционной системы регулирования приведена на рис. 2.

Назначение. Принцип работы - student2.ru

Рис. 2. Структурная схема двухпозиционной системы регулирования

где: АР – двухпозиционный регулятор, ОУ – обьект управления, SP – узел формирования заданной точки (задания), Е – рассогласование регулятора, PV=X – регулируемая величина, У – управляющее воздействие, Z – возмущающее воздействие.

Для предотвращения «дребезга» управляющего выходного устройства (например, реле) и исполнительного механизма (например, нагревательного элемента) вблизи задания SP (слишком частого включения нагревателя), предусматривается гистерезис Н.

Гистерезис

Параметр гистерезис определяет выброс (+ или -) от уставки SP. Эта величина используется для минимизации шума в PV, для более точного определения частоты колебаний процесса.

Множество управляемых систем намеренно имеют гистерезис. Например, рефрижератор может включить компрессор, когда температура выше 45 0С. Если компрессор остановится, когда температура упадёт ниже 450С, компрессор может включиться, когда температура достигнет 44.99999 0С и остановится снова, как только температура качнётся на тысячную долю градуса. Поэтому термостаты создаются с встроенным гистерезисом. Так что компрессор запускается только когда температура достигнет 430С. Интересный результат гистерезиса тот, что он показывает определённое количество «зависимости». Сможет ли компрессор включиться при 44 0С? Это зависит от того, был ли рефрижератор в охлаждающем или нагревающем цикле.

При какой температуре мог бы компрессор вкл/выкл? И снова – это зависит от того, был ли компрессор при 450С. Но выкл при 430С. Область в середине вэтом случае - это область, где нет чёткого ответа, пока вы не знаете историю системы, которую вы наблюдаете.

Функцию гистерезиса может выполнять компаратор, обладающий эффектом гистерезиса. Если значение входа превышает максимальное пороговое значение, выход становится равным 0. Если значение входа меньше минимального порогового значения, выход становится равным 1. В пределах от минимального порогового значения до максимального порогового значения выход функции не меняется. Триггер Шмидта можно использовать для задания гистерезиса.Двухпозиционный контроллер (компаратор) сравнивает значение измеренной величины с эталонным (уставкой). Состояние выходного сигнала изменяется на противоположное, если входной сигнал (измеренная величина) пересекает пороговый уровень (уставку).

В режиме двухпозиционного регулятора (компаратора) он сравнивает значение входной величины с уставками и выдает управляющий сигнал на выходное устройство в соответствии с заданной логикой.

Выходной сигнал двухпозиционного регулятора может иметь только два значения: максимальное и минимальное. Одно из них включает, а другое выключает выходное устройство.

Поэтому для работы в режиме двухпозиционного регулятора требуется выходное устройство дискретного типа (э/м реле, транзисторная оптопара, оптосимистор, выход для управления внешним твердотельным реле).

Тип логики двухпозиционного регулятора, уставка Туст. и гистерезис Н задаются пользователем при программировании прибора.

Двухпозиционный регулятор используется:

  • для регулирования измеренной величины в несложных системах, когда не требуется особой точности;
  • для сигнализации о выходе контролируемой величины за заданные границы.

Например, описание работы двухпозиционной системы регулирования температуры в печи с помощью нагревателя может быть представлено следующим образом:

  1. нагреватель включен, пока температура в печи (X=PV) не достигнет значения заданной точки SP.
  2. выход регулятора Y (нагреватель) отключается, если регулируемая величина (температура) выше заданной точки SP.
  3. повторное включение нагревателя происходит после уменьшения температуры до значения SP-H, т.е. с учетом гистерезиса H переключательного элемента.

Управляемая величина (PV) измеряется первой, преобразуется в электрический сигнал, подаваемый в PLC, для управления этой величиной. Эта (PV) затем сравнивается с желаемой величиной (SP), если эта уставка – постоянна, или с желаемым изменением этой величины, например, по известной кривой изменения (SP).

Назначение. Принцип работы - student2.ru

  • Чем больше гистерезис Н, отношение τd /Т, R - тем больше амплитуда колебаний Ак.
  • Чем больше время запаздывания τd и постоянная времени обьекта Т - тем больше период колебаний Тк (рис. 5).

Точность регулирования технологического параметра, например, температуры зависит от величины гистерезиса. Чем меньше гистерезис, тем точнее регулирование, но тем чаще включается нагреватель и тем самым больше износ коммутационных элементов (например, реле). Уменьшая гистерезис, можно повысить качество регулирования до некоторого предела, определяемого параметрами обьекта регулирования (тепловой инерцией, мощностью нагревателя, тепловой связью нагревателя и обьекта и др.).

Назначение. Принцип работы - student2.ru

Вид статической характеристики, представленный на рис. 6-а: обычно применяется в различных системах управления нагревом - нагревательных приборах, печах, термошкафах, теплообменниках и т.п. Данный тип регулятора называется обратным регулятором.При использовании в системах сигнализации данная логика работы выходного устройства носит название «меньше установленного значения» или - «меньше минимума».

Вид статической характеристики, представленный на рис. 6-б: обычно применяется в различных процессах управления охлаждением – в системах вентиляции, в холодильных установках и т.п. Данный тип регулятора называется прямым регулятором. При использовании в системах сигнализации данная логика работы выходного устройства носит название «больше установленногозначения» или - «больше максимума».

Виды статических характеристик, представленные на рис. 6-в и 6-г: применяются для сигнализации выхода системы управления на рабочий режим. Эти регуляторы еще называют компараторами.

Вид на рис. 6-в используется для сигнализации вхождения параметра в норму. Данная логика работы выходных устройств имеет наименование «в зоне установленных значений» или - «в зоне минимум-максимум».

Вид на рис. 6-г используется для используется для сигнализации выхода параметра за определенные пределы. Данная логика работы выходных устройств имеет наименование «вне зоны установленных значений» или - «вне зоны минимум-максимум».

Двухпозиционное регулирование и сигнализация с ожиданием события применяется в случаях, когда необходимо, например, отключить (включить) включенный (выключенный) управляющий выход для того, чтобы осуществить запуск другого оборудования. Функция ожидания некоторого события является функцией безусловного отключения (включения) управляющего выхода. Условием ожидания события для этого может служить:

  • изменение заданной точки регулятора,
  • включение дискретного входа регулятора,т.е. факт состоявшегося события от другого контроллера (регулятора или другого оборудования) формируется дискретным сигналом,
  • с запретом срабатывания при старте. Например, установлена логика работы выходного устройства меньше установленного значения с запретом срабатывания при старте (включении питания). Например, при включении оборудования измеряемая величина еще не вышла на режим и меньше установленного значения - это может повлечь включение выходного устройства. Но при данной логике работы выходное устройствоне включится, т.к. измеряемая величина впервые вышла за установленные пределы. Выходное устройство включится тогда, когда измеряемая величина выйдет из этих пределов, и затем снова войдет в установленные пределы.

В современных микропроцессорных регуляторах выбор типа условия ожидания события и логика работы выходных устройств (рис. 6 (а-г)) являются программируемыми параметрами. В качестве примера на рис. 7 приведен процесс двухпозиционного управления с ожиданием события и с логикой работы в зоне установленных значений MIN и MAX.

Назначение. Принцип работы - student2.ru

Двухпозиционные регуляторы практически неприменимы для систем с существенным транспортным запаздыванием (τd > 0,2Т) и для объектов без самовыравнивания, так как регулируемая величина далеко выходит за необходимые пределы регулирования. В этом случае применяют регуляторы с ПИ или ПИД законом регулирования.

Назначение гистерезиса Н - предотвращение «дребезга» управляющего выходного устройства (например, реле) и исполнительного механизма вблизи точки его включения (слишком частого включения). Также зона гистерезиса предназначена для исключенияодновременного включения выходных устройств YБ (больше) и YМ (меньше), например для управления реверсивными двигателями, где одновременное включение может привести к выходу из строя двигатель исполнительного механизма.

Встречаются другие наименования параметра зоны гистерезиса - зона возврата, зона неравномерности, дифференциал. Гистерезис (в некоторых типах регуляторов) может принимать как положительные, так и отрицательные значения. Отрицательные значения гистерезиса используются в основном для упрежденя или задержки включения (выключения) выходных устройств.

В процессах химической технологии регулирующими параметрами обычно бывают материальные потоки сырья, полуфабрикатов, энергоносителей и другие. Изменение таких потоков производят с помощью клапанов, заслонок, задвижек, кранов и других регулирующих органов. Иногда не удается или затруднительно применить регулирующий орган, плавно изменяющий расход в трубопроводе. Например, на абразивных пульпах или агрессивных средах обычные регулирующие органы быстро изнашиваются или разрушаются. В некоторых случаях не желательны потери давления в трубопроводе на регулирующем органе. Чаще оказывается проще вместо плавного регулирования потока в трубопроводе просто включать или выключать насос. Наконец, в процессах с электрическим нагревом, как правило, подаваемую на нагрев электроэнергию не регулируют плавно, а только включают или выключают электронагрев в зависимости от значения регулируемой температуры.

Всем подобным примерам свойственна одна особенность - позиционное изменение регулирующего параметра. Если регулирующий параметр может принимать только одно из двух возможных значений (включено - выключено, открыто - закрыто и др.), то соответствующий регулятор и вся система управления называются двухпозиционными. Понятно, что ограничение регулирующего параметра ухудшает качество регулирования системы управления.

В качестве примера рассмотрим работу двухпозиционной системы управления на примере регулирования температуры плиты пресса для производства пластмассовых изделий

Назначение. Принцип работы - student2.ru

Рис. 14. Двухпозиционная система управления температуры. (ИУ – измерительное устройство, ИМ – исполнительный механизм, Р- регулятор, РО – регулирующий орган, 1 – плита, 2 – электрический нагреватель.)

В плиту 1 вмонтирован электрический нагреватель 2, подключенный к силовой электросети через выключатель, который является регулирующим органом РО. Управление выключателем производится электромагнитом исполнительного механизма ИМ. Температура плиты измеряется термопарой в комплекте с автоматическим потенциометром, образующее измерительное устройство ИУ. Результат измерения температуры передается в регулятор Р, который управляет исполнительным механизмом. При опускании температуры ниже заданной нагреватель включается, а при превышении заданной температуры - выключается.

Чтобы термопара измеряла среднюю температуру плиты, ее заглубляют в плиту, но не слишком близко к нагревателю. Сама плита с нагревателем как объект регулирования обладает значительной тепловой инерцией и запаздыванием выходного сигнала. При нагреве литы, когда нагреватель включен, повышение температуры происходит постепенно, от центра к поверхности. Поэтому термопара реагирует на включение нагревателя с запаздыванием. Точно так же при остывании плиты, когда нагреватель включен, снижение температуры распространяется от поверхности к центру и не сразу улавливается термопарой.

На рис. 15 показаны переходные процессы изменения во времени температуры плиты вместе установки термопары и напряжения нагревателя. При включенном нагревателе измеренная температура повышается, и когда она сравняется с заданной (точка а), регулятор выключает нагреватель. Однако в следствии явления запаздывания в объекте температура сначала продолжает расти, достигает некоторого максимального значения (точка б) и только после этого начинает уменьшаться. При достижении заданной температуры (точка в) снова включается нагреватель и все происходит в обратном порядке. Температура по инерции проскакивает заданное значение, достигает минимальной величины (точка г) и за тем увеличиваясь, происходит заданное значение температуры в точке д. Далее этот цикл повторяется. Как видно, в рассмотренной двухпозиционной системе управления возникают незатухающие колебания температуры возле заданного значения. Такой процесс регулирования характерен для любой позиционной системы управления.

Период колебаний (промежуток времени между точками а и д) зависит от инерции объекта: чем она больше, тем больше период колебаний регулируемого параметра. Амплитуда же колебаний в основном определяется запаздыванием в объекте и с его увеличением растет. В малоинерционных объектах период колебаний может оказаться на столько малым, что регулирующий орган будет быстро изнашиваться из-за частого срабатывания. Представленный выше объект регулирования, у которого статическая характеристика – зависимость входного сигнала (регулируемого параметра) от входного (регулирующего параметра) – была такова, что увеличение регулирующего параметра приводило либо только к увеличению, либо только к уменьшению регулируемого параметра. Так, при регулировании температуры в реакторе подачей греющего пара увеличение расхода пара всегда приводит к росту температуры. Такая зависимость называется монотонной, и это свойство объекта является отличным признаком стабилизирующих систем. Благодаря этому обратная связь в системе управления остается отрицательным во всем возможном диапазоне изменения регулируемого параметра.

Дополнительная связь в структурной схеме системы управления, направленная от выхода к входу рассматриваемого участка системы управления, называется обратной связью (ОС).

Обратная связь может быть отрицательной или положительной.

Контроллером (PLC) в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

Датчик – устройство или комплекс устройств, преобразующих измеряемый параметр технологического процесса в вид, удобный для дальнейшей передачи и использования

Алгоритм - набор инструкций, описывающих порядок действий исполнителя для достижения результата решения задачи за конечное время.

Главная цель PLC-регулятора – это автоматическое управление и отсутствие постоянного наблюдения оператора. Основное применение PID управления предназначенно для измерения и регулирования: расхода, уровня, давления, температуры и других неэлектрических величин, преобразованных в электрические сигналы (напряжения, постоянного тока или активного сопротивления). Пребразование осуществляется посредством передачи регулирующего параметра через аналогово-цифровой модуль (АЦМ) и другие блоки, присоединённые непосредственно к контроллеру.

Динамическая характеристика (Dynamic response ) -переходная характеристика выходной переменной системы после того, как входная переменная подверглась изменению.

Чувствительность – характеризует способность измерительного преобразователя изменять малые сигналы. Чем меньше сигналы может измерять, тем чувствительнее прибор. Милливольтметр (мB) может измерять тысячные доли Вольта, обычный вольтметр - нет.

Но! Чем чувствительнее прибор, тем больше погрешность, при уменьшении диапазона не удается снизить абсолютную погрешность.

Поэтому для каждой конкретной конструкции существует порог чувствительности – минимально возможный диапазон измерений, при котором абсолютная погрешность равна этому диапазону и приведенная погрешность 100%. Порог чувствительности ограничивает измерение малых сигналов.

Аналоговый вход (измерение) называется переменной процесса "PV". Она должна точно отражать с высокой точностью параметр процесса, которым стараются управлять.

Пример. Нужно установить температуру + или – 1 градус , тогда мы типично стремимся по меньшей мере к 1/10 градуса). Если аналоговый вход 12-бит, и температурный диапазон для датчика от 0 до 4000 С, то наша «теоретическая» точность д. б. рассчитана

Назначение. Принцип работы - student2.ru

Назначение. Принцип работы - student2.ru

Этот датчик преобразовывает температуру транзистора в аналоговое напряжение. Для измерения температурный датчик должен быть сначала калиброван. Для этого используются точки 250o и 1000o на панели калибровки υ. При помощи этих точек можно приблизительно определить характеристику датчика U/ υ. Но примите во внимание, что точная калибровка датчика - только использование калиброванного термометра.

Качество управления АСУ– совокупность свойств АСУ, характеризующих точность поддержания управляемой величины на заданном уровне в установившихся и переходных режимах.

Три главных показателя качества – перерегулирование σ, первое максимальное отклонение xми длительность переходного процесса tп- тесно связаны между собой. Они зависят от всех параметров системы, но наиболее сильно – от передаточного коэффициента kразомкнутой системы. Причем, с увеличением этого коэффициента максимальное отклонение по каналу возмущения всегда уменьшается, максимальное отклонение по каналу задающего воздействия всегда увеличивается, а перерегулирование и длительность переходного процесса, как правило, увеличиваются.

Отыскание оптимального компромисса между этими двумя противоречивыми тенденциями является одной из основных задач синтеза автоматизированной системы управления.

Критериев качества регулирования много. Их разделяют на 4 группы:

  1. Критерии точности - используют величину ошибки в различных типовых режимах.
  2. Критерии величины запаса устойчивости - оценивают удаленность САР от границы устойчивости.
  3. Критерии быстродействия - оценивают быстроту реагирования САР на появление задающего и возмущающего воздействий.
  4. Интегральные критерии - оценивают обобщенные свойства САР: точность, запас устойчивости, быстродействие.

Наши рекомендации