Исторически в развитии программирования можно выделить несколько принципиально отличающихся методологий
Изначально понятие технологии как таковой — это 60-е годы прошлого столетия — это период "стихийного" программирования. В этот период отсутствовало понятие структуры программы, типов данных и т.д. Вследствие этого код получался запутанным, противоречивым. Программирование тех лет считалось искусством. Конец 60-х — кризис в программирование.
Выход из этого кризиса — переход к структурной парадигме программирования. Структурный подход к программированию представляет собой совокупность рекомендуемых технологических приемов, охватывающих выполнение всех этапов разработки программного обеспечения. В основе структурного подхода лежит декомпозиция (разбиение на части) сложных систем с целью последующей реализации в виде отдельных небольших подпрограмм. С появлением других принципов декомпозиции (объектного, логического и т.д.) данный способ получил название процедурной декомпозиции.
Другим базовым принципом структурного программирования является использование при составлении программ только базовых алгоритмических структур (см. билет 4), запрет на использование оператора GOTO.
Структурный подход требовал представления задачи в виде иерархии подзадач простейшей структуры. Проектирование осуществлялось "сверху-вниз" и подразумевало реализацию общей идеи, обеспечивая проработку интерфейсов подпрограмм. Одновременно вводились ограничения на конструкции алгоритмов, рекомендовались формальные модели их описания, а также специальный метод проектирования алгоритмов — метод пошаговой детализации.
Поддержка принципов структурного программирования была заложена в основу так называемых процедурных языков программирования. Как правило, они включали основные "структурные" операторы передачи управления, поддерживали вложение подпрограмм, локализацию и ограничение области "видимости" данных. Среди наиболее известных языков этой группы стоит назвать PL/1, ALGOL-68, Pascal, С.
Дальнейший рост сложности и размеров разрабатываемого программного обеспечения потребовал развития структурирования данных. Как следствие этого в языках появляется возможность определения пользовательских типов данных. Одновременно усилилось стремление разграничить доступ к глобальным данным программы, чтобы уменьшить количество ошибок, возникающих при работе с глобальными данными. В результате появилась и стала развиваться технология модульного программирования.
Модульное программирование предполагает выделение групп подпрограмм, использующих одни и те же глобальные данные, в отдельно компилируемые модули (библиотеки подпрограмм), например, модуль графических ресурсов. Связи между модулями при использовании данной технологии осуществляются через специальный интерфейс, в то время как доступ к реализации модуля (телам подпрограмм и некоторым "внутренним" переменным) запрещен. Эту технологию поддерживают современные версии языков Pascal и С (C++), языки Ада и Modula.
Объектно-ориентированное программирование (ООП) определяется как технология создания сложного программного обеспечения, основанная на представлении программы в виде совокупности объектов, каждый из которых является экземпляром определенного типа (класса), а классы образуют иерархию с наследованием свойств. Взаимодействие программных объектов в такой системе осуществляется путем передачи сообщений.
Основным достоинством объектно-ориентированного программирования по сравнению с модульным программированием является "более естественная" декомпозиция программного обеспечения, которая существенно облегчает его разработку. Это приводит к более полной локализации данных и интегрированию их с подпрограммами обработки, что позволяет вести практически независимую разработку отдельных частей (объектов) программы. Кроме этого, объектный подход предлагает новые способы организации программ, основанные на механизмах наследования, полиморфизма, композиции, наполнения. Эти механизмы позволяют конструировать сложные объекты из сравнительно простых. В результате существенно увеличивается показатель повторного использования кодов и появляется возможность создания библиотек классов для различных применений.
Бурное развитие технологий программирования, основанных на объектном подходе, позволило решить многие проблемы. Так были созданы среды, поддерживающие визуальное программирование, например, Delphi, C++ Builder, Visual C++ и т. д. При использовании визуальной среды у программиста появляется возможность проектировать некоторую часть, например, интерфейсы будущего продукта, с применением визуальных средств добавления и настройки специальных библиотечных компонентов. Результатом визуального проектирования является заготовка будущей программы, в которую уже внесены соответствующие коды.
Можно дать обобщающее определение: объект ООП — это совокупность переменных состояния и связанных с ними методов (операций). Упомянутые методы определяют, как объект взаимодействует с окружающим миром.
Под методами объекта понимают процедуры и функции, объявление которых включено в описание объекта и которые выполняют действия. Возможность управлять состояниями объекта посредством вызова методов в итоге и определяет поведение объекта. Эту совокупность методов часто называют интерфейсом объекта.
Инкапсуляция — это механизм, который объединяет данные и методы, манипулирующие этими данными, и защищает и то и другое от внешнего вмешательства или неправильного использования. Когда методы и данные объединяются таким способом, создается объект.
Применяя инкапсуляцию, мы защищаем данные, принадлежащие объекту, от возможных ошибок, которые могут возникнуть при прямом доступе к этим данным. Кроме того, применение этого принципа очень часто помогает локализовать возможные ошибки в коде программы. А это намного упрощает процесс поиска и исправления этих ошибок. Можно сказать, что инкапсуляция подразумевает под собой скрытие данных, что позволяет защитить эти данные. Однако применение инкапсуляции ведет к снижению эффективности доступа к элементам объекта. Это обусловлено необходимостью вызова методов для изменения внутренних элементов (переменных) объекта. Но при современном уровне развития вычислительной техники эти потери в эффективности не играют существенной роли.
Наследование — это процесс, посредством которого один объект может наследовать свойства другого объекта и добавлять к ним черты, характерные только для него. В итоге создаётся иерархия объектных типов, где поля данных и методов "предков" автоматически являются и полями данных и методов "потомков".
Смысл и универсальность наследования заключается в том, что не надо каждый раз заново ("с нуля") описывать новый объект, а можно указать "родителя" (базовый класс) и описать отличительные особенности нового класса. В результате новый объект будет обладать всеми свойствами родительского класса плюс своими собственными отличительными особенностями.
Полиморфизм — это свойство, которое позволяет одно и тоже имя использовать для решения нескольких технически разных задач. Полиморфизм подразумевает такое определение методов в иерархии типов, при котором метод с одним именем может применяться к различным родственным объектам. В общем смысле концепцией полиморфизма является идея "один интерфейс — множество методов". Преимуществом полиморфизма является то, что он помогает снижать сложность программ, разрешая использование одного интерфейса для единого класса действий. Выбор конкретного действия, в зависимости от ситуации, возлагается на компилятор.
Современная технология программирования — компонентный подход, который предполагает построение программного обеспечения из отдельных компонентов — физически отдельно существующих частей программного обеспечения, которые взаимодействуют между собой через стандартизованные двоичные интерфейсы. В отличие от обычных объектов объекты-компоненты можно собрать в динамически вызываемые библиотеки или исполняемые файлы, распространять в двоичном виде (без исходных текстов) и использовать в любом языке программирования, поддерживающем соответствующую технологию. На сегодня рынок объектов стал реальностью. Это позволяет программистам создавать продукты, хотя бы частично состоящие из повторно использованных частей, т.е. использовать технологию, хорошо зарекомендовавшую себя в области проектирования аппаратуры.
Компонентный подход лежит в основе технологий, разработанных на базе COM (Component Object Model — компонентная модель объектов), и технологии создания распределенных приложений CORBA (Common Object Request Broker Architecture — общая архитектура с посредником обработки запросов объектов). Эти технологии используют сходные принципы и различаются лишь особенностями их реализации.
Технология СОМ фирмы Microsoft является развитием технологии OLE (Object Linking and Embedding — связывание и внедрение объектов), которая использовалась в ранних версиях Windows для создания составных документов. Технология СОМ определяет общую парадигму взаимодействия программ любых типов: библиотек, приложений, операционной системы, т. е. позволяет одной части программного обеспечения использовать функции (службы), предоставляемые другой, независимо от того, функционируют ли эти части в пределах одного процесса, в разных процессах на одном компьютере или на разных компьютерах. Модификация СОМ, обеспечивающая передачу вызовов между компьютерами, называется DCOM (Distributed COM — распределенная СОМ).
Таковы, вкратце, основные этапы изменения технологий программирования. Поскольку программное обеспечение на сегодняшний день используется в самых различных устройствах и сферах деятельности человека, то можно прогнозировать дальнейшее совершенствование технологий программирования.
Обсудим далее то, что, в конечном итоге, является "кирпичиками", строительным материалом любой программы — подпрограммы и варианты их реализации на примере языка Pascal — процедуры и функции.
При решении новых задач можно попытаться воспользоваться ранее написанными программами. Алгоритм, ранее разработанный и целиком используемый в составе других алгоритмов, называется вспомогательным. Применение вспомогательных алгоритмов позволяет разбить задачу на части, структурировать ее.
Вся программа условно может быть разделена на две части: основную и вспомогательную. В основной части производится простейшая обработка информации, организуется обращение к разным подпрограммам. Вспомогательный алгоритм тоже может вызывать другие вспомогательные, длина такой цепочки вызовов теоретически не ограничена. Вспомогательными и основными алгоритмы являются не сами по себе, а по отношению друг к другу.
При использовании вспомогательных алгоритмов необходимо учитывать способ передачи значений исходных данных для них и получения результата от них. Аргументы вспомогательного алгоритма — это переменные, в которых должны быть помещены исходные данные для решения соответствующей подзадачи. Результаты вспомогательного алгоритма — это также переменные, где содержатся результаты решения этих подзадач, а также результатом может быть конкретное действие, которое совершает компьютер под действием подпрограммы.
Подпрограммы могут быть двух видов: подпрограмма без параметров и подпрограмма с параметрами. Обращение к подпрограмме может быть организовано из любого места основной программы или другой подпрограммы сколько угодно раз.
При работе с подпрограммами важными являются понятия формальных и фактических параметров. Формальные параметры — это идентификаторы входных данных для подпрограммы. Если формальные параметры получают конкретные значения, то они называются фактическими. Формальные параметры могут получить конкретные значения только в той программе, где производится обращение к данному модулю-подпрограмме. Тип и порядок записи, а также семантическое (смысловое) наполнение фактических параметров должны быть такими же, как и формальных параметров. В противном случае результат работы программы будет непредсказуемым. Из этого следует, что фактические параметры используются при обращении к подпрограмме из основной, а формальные параметры — только в самой подпрограмме.
Подпрограмма с параметрами используется для записи многократно повторяющихся действий при разных исходных данных. Подпрограммы с параметрами можно разделить на два типа: подпрограммы-функции и просто подпрограммы с параметрами (их называют процедурами).