Минералогический состав
Цель и задачи обогащения минерального сырья.
Руды непосредственно не могут стать сырьем для производства различных товарных продуктов.
Обогащением ПИ называется совокупность процессов первичной обработки минерального сырья с целью разделения минералов и получения кондиционных продуктов с повышенной концентрацией в них одного или нескольких ПК. При обогащении ПИ используют различия в физических и химических свойствах минералов представленных в рудах с учетом их вещественного состава.
К обогатительным условно относят также процессы разделения горной массы по крупности кусков и частиц, процессы окускования мелкого минерального сырья при агломерации или окомковании концентратов перед плавкой), различные виды обжига и выщелачивания (химического или бактериологического) при использовании их в схемах обогащения.
Обогатительные процессы реализуются на обогатительных, сортировочных, агломерационных, окомковательных и брикетных фабриках.
В процессе обогащения решаются вопросы:
- распределения всех компонентов руды между выпускаемыми товарными концентратами и продуктами, из которых обеспечивается наиболее рациональное их извлечение в металлургическом производстве или эффективное использование в других отраслях.
- сокращение безвозвратных потерь ПК в концентратах, используемых в других отраслях промышленности.
- обеспечения качества получаемых концентратов и продуктов, отвечающего условиям наиболее эффективного использования в соответствующих отраслях промышленности.
Экономическое значение ОПИ обусловлено:
- снижением стоимости переработки обогащенного сырья, по сравнению с природным;
- повышением эффективности последующего металлургического, химического и других переделов за счет снижения потерь, увеличения производительности и повышения качества продукции при переработке обогащенного сырья;
- увеличением доли дополнительной прибыли, получаемой за счет попутного извлечения ценных спутников и минеральных комплексов;
- возможностью резкого снижения стоимости добычи руд при осуществлении их предварительной концентрации в условиях глобального снижения содержания ЦК минерального сырья.
Методы обогащения, их физические и физико-химические основы.
Основные характеристики вещественного состава ПИ
К основным характеристикам вещественного состава относятся:
- химический;
- минералогический;
- гранулометрический;
- текстурные и структурные особенности его строения.
Химический состав
Химический состав характеризует содержание элементов, входящих в состав ПИ, и определяется различными физико-химическими методами.
Химические элементы или минералы их содержащие, входящие в состав ПИ и имеющие важное значение для дальнейшего использования, называются ЦК.
Руды, содержащие несколько ЦК-ов, являются комплексными.
Отдельные элементы или природные химические соединения, содержащиеся в ПИ и оказывающие отрицательное влияние на качество извлекаемых ЦК называются вредными примесями. Например, для железных руд вредными являются мышьяк, сера, фосфор, цинк, свинец.
Минералогический состав
Минералогический состав характеризует минеральные формы проявления важнейших элементов, входящих в состав ПИ, и содержание основных минералов. Он определяет технологические показатели обогащения, поскольку:
- каждый ЦК может содержаться как в легко-, так и трудноизвлекаемых минералах;
- возможность эффективного разделения минералов при обогащении определяется степенью контрастности (различия) свойств разделяемых минералов;
- разделение минералов при обогащении осложняется при наличии в рудах значительного количества разрушенных пород и охристо-глинистого материала, образующих при измельчении большое количество первичных и вторичных шламов.
Для определения минералогического состава используют макроскопическое изучение образцов, микроскопическое исследование измельченной руды и шлифов, фазовый анализ, выделение и изучение мономинеральных фракций, рентгенографические методы, термический и люминесцентный анализы, микрорентгеноспектральный метод.
Макроскопическое изучение образцов позволяет качественно определить почти все основные минералы, крупность и характер их вкрапленности, степень окисления. В процессе микроскопического исследования, помимо качественного и количественного определения состава пробы, выявляют наличие в руде различных генераций минералов, степень и характер изменений руд, происшедших в результате различных природных процессов, наличие микровключений в минералы, форму, размер, структуру и состояние поверхности частиц.
Рентгенографические методы имеют решающее значение при диагностике минералов, когда по внешним признакам и оптическим свойствам распознать их трудно. С помощью рентгенографии определяют также форму нахождения элемента-примеси в минерале-носителе. Анализ тонкодисперсных глинистых минералов, а также сложных полиметаллических руд осуществляют методами дифрактометрической рентгенографии и электронной микроскопии.
Термический анализ широко применяют для качественного и, в меньшей степени, для количественного определения глинистых минералов, слюд, хлоритов, карбонатов, органических веществ.
Люминесцентный анализ служит для диагностики и количественного определения содержания люминесцирующих минералов: шеелита, урановых минералов, корунда, алмаза, битума, циркона и др.
Электродиализ успешно применяют для изучения форм вхождения элементов-примесей в минералы-носители, определения относительной растворимости минералов в различных электролитах.
Микрорентгеноспектралъный анализ позволяет изучать морфологию минеральных включений, граней кристаллов и срастаний, определять состав минералов и концентрацию в них примесей начиная с 0,01 % и более.
Фазовым анализом, основанным на селективном растворении минералов, количественно определяют минеральные формы каждого из цветных, черных и некоторых редких металлов.
Фазовый, или рациональный, анализ особенно необходим для определения минерального состава сложных частично окисленных и окисленных руд цветных металлов. Если основные металлы в них более чем на 80 % представлены сульфидными минералами, то руды считаются сульфидными; если содержание сульфидных фракций основных металлов меньше 50 %, — окисленными. При промежуточных содержаниях сульфидных форм основных металлов руды считаются смешанными или сульфидно-окисленными.
Основная масса (80-85%) цветных металлов сосредоточена в сульфидных оруденениях, и сульфидные руды являются главным источником их производства. В зависимости от общего содержания сульфидов в руде различают вкрапленные (менее 25 % сульфидов) и массивные или сплошные (более 50 % сульфидов) руды. Сульфидные медные руды при этом подразделяются на первичные и вторичные в зависимости от соотношения первичных и вторичных сульфидов меди в них.
Руды черных металлов и горно-химическое сырье различают главным образом по минералогическому составу основных ценных компонентов. Так, железные руды бывают магнетитовыми, титаномагнетитовыми, гематитомарматитовыми, бурожелезняковыми, сидеритовыми. Хромовые руды обычно представлены хромшпинелидами, в которых основным минералом является хромит; горно-химическое сырье — апатитовыми, апатит-нефелиновыми и борными рудами, фосфоритами, сильвинитами и самородной серой.