Тампонажные цементы и растворы
Способность тампонажных цементов после затворения водой к структурообразованию и твердению (превращению в камень) обусловила их применение для цементирования скважин.
Применительно к портландцементу (который используют в качестве тампонажного цемента для «холодных» и «горячих» скважин) первой стадией структурообразования является возникновение коагуляционной структуры исходных частиц цемента и гидратных новообразований. На второй стадии развивается сплошная рыхлая кристаллизационная структура гидроалюмината, которая обычно разрушается при перемешивании раствора. Третья стадия — это образование кристаллизационной структуры гидросиликатов.
При затворении цемента водой сначала происходит растворение его небольшой части, вступающей в химическое взаимодействие с водой, до насыщения. Затем наступает период коллоидации, характеризующейся высокой дисперсностью частиц цемента, — период собственно схватывания (коагуляционного структурообразования), переходящего в собственно твердение (период кристаллизации) раствора при переходе системы из менее устойчивого состояния в более устойчивое.
Природа сил, обусловливающих прочность тампонажного камня, имеет разные толкования, основанные как на кристаллизационной, так и на коллоидно-химической теории. В первом случае она объясняется срастанием кристаллов в местах контактов за счет ионно-химических связей, а во втором — сцеплением частиц благодаря ван-дер-ваальсовым поверхностным силам.
Процесс структурообразования вяжущих веществ проходит в два этапа.
Результатом первого этапа является получение коагуляционной структуры частиц и гидратных новообразований. Пластическая прочность структуры к этому моменту низка, темп нарастания ее медленный и зависит от связывания воды, степени диспергирования цемента в воде и накапливания гидратных новообразований. Такая система тиксотропна, и связь между частицами в ней обеспечивается через гидратные оболочки, которые отделяют их друг от друга. После механического разрушения системы связь восстанавливается.
Второй этап характеризуется возникновением и развитием кристаллизационной структуры гидратов цементных минералов. Поверхность частиц увеличивается, возникают молекулярные связи между ними. Этот процесс характеризуется интенсивным нарастанием прочности структуры. Формируется непосредственная связь между частицами, которая отличается высокой прочностью и необратимым характером разрушения (например, при запоздалом продавлении раствора).
Существенное влияние на процесс твердения цементного раствора оказывают температура и давление. С их увеличением ускоряется гидратация, изменяется растворимость твердых веществ в жидкой фазе, изменяется также фазовый состав продуктов гидратации цементов, шлаков и других вяжущих материалов.
В заколонном пространстве может сложиться такая ситуация, при которой одновременное перемешивание тампонажного раствора и изменение температуры приведут к схватыванию и твердению цементного раствора отдельными зонами. Картина примет еще более мозаичный характер, если учесть действие повышенного водоцементного отношения и изменяющуюся концентрацию реагентов-структурообразователей.
Если при нормальных условиях добавляемый песок является практически инертным наполнителем, то при повышенных температурах кварц становится активным и взаимодействует с составляющими цемента.
Кварц, растворяясь в воде при нагревании и под давлением, вступает в реакцию с известью; на этом принципе основано производство песчаноизвестковых кирпичей. Скорость этой реакции в значительной степени зависит от удельной поверхности кварца.
Общепризнанная теория природы процессов гидратационного структурообразования и твердения шлаковых растворов в настоящее время отсутствует.
Взаимодействие шлаков с водой сопровождается комплексом процессов, включающих адсорбцию, ионный обмен, выщелачивание, гидролиз, гидратацию и другие, в результате которых происходят деструкция исходных фаз и возникновение новых.
При нормальной температуре как комовые, так и гранулированные шлаки даже при наиболее благоприятных химическом и фазовом составах почти не проявляют вяжущих свойств. При введении в раствор щелочных соединений гидроксидов натрия, кальция, калия происходят дальнейшие гидролиз и гидратация. Кроме щелочной активации шлаков на практике применяют еще сульфатную, а также комбинированную. Обычно в качестве щелочных активаторов используют известь и портландцемент, а в качестве сульфатных — гипс и ангидрит.
Мощное средство пробуждения гидравлической активности доменных шлаков — повышение температуры.
Добавки кварцевого песка при высоких температурах в значительной степени интенсифицируют гидратацию шлака с образованием низкоосновных высокопрочных гидросиликатов.
Шлакопесчаные растворы при высоких температурах и давлениях дают плотные и прочные камни, очень стойкие в агрессивных средах.
Твердение тампонажного камня в условиях циклического температурного воздействия (скважины с термическим воздействием на пласты) характеризуется существенным изменением их физико-механических свойств.
Тепловая обработка значительно интенсифицирует процессы гидратации и твердения. Результаты исследований показывают, что в среде пара процессы гидратации и роста кристаллогидратов протекают интенсивнее, чем в воде.
Основные технологические параметры ТР
Цементным тестом называется смесь цемента с водой. Цемент перед испытанием просеивается через сито 80 мкм.
Водо-цементное отношение – В/Ц – отношение объема воды к весу цемента.
Тесто готовится вручную в сферической чаше в течение 3 минут или на специальных мешалках 5 минут.
1. Растекаемость, см – определяет текучесть (подвижность) цементного раствора.
2. Плотность, г/см3 – отношение массы цементного раствора к его объему.
3. Фильтрация или водоотдача, см3 за 30мин – величина, определяемая объемом жидкости затворения, отфильтрованной за 30 минут при пропускании цементного раствора через бумажный фильтр ограниченной площади под давлением 1 атм.
4. Седиментационная устойчивость цементного раствора – определяется водоотделением, т.е. максимальным количеством воды, способным выделиться из цементного раствора в результате процесса седиментации.
5. Время загустевания (час - мин, начало-конец) – время потери текучести.
5. Сроки схватывания (час - мин, начало-конец) – определят время перехода цементного раствора в твердое состояние цементного камня.
http://www.vevivi.ru/best/Primenenie-modulei-geofizicheskikh-issledovanii-skvazhin-i-metodika-obrabotki-dannykh-v-protsesse-bureniya-ref12408.html