Фотоэлектрические элементы

Устройства для прямого преобразования световой или солнечной энергии в электроэнергию называются фотоэлементами (по-английски Photovoltaics, от греческого photos - свет и названия единицы электродвижущей силы - вольт). Преобразование солнечного света в электричество происходит в фотоэлементах, изготовленных из полупроводникового материала, например, кремния, которые под воздействием солнечного света вырабатывают электрический ток. Соединяя фотоэлементы в модули, а те, в свою очередь, друг с другом, можно строить крупные фотоэлектрические станции. Крупнейшая такая станция на сегодняшний день - это 5-мегаваттная установка Карриса Плейн в американском штате Калифорния. КПД фотоэлектрических установок в настоящее время составляет около 10%, однако отдельные фотоэлементы могут достигать эффективности 20% и более.

ИСТОРИЯ ФОТОЭЛЕМЕНТОВ

История фотоэлементов берет начало в 1839 году, когда французский физик Эдмон Беккерель открыл фотогальванический эффект. За этим последовали дальнейшие открытия:

· В 1883 г. электрик из Нью-Йорка Чарльз Фриттс изготовил фотоэлементы из селена, которые преобразуют свет в видимом спектре в электричество и имеют КПД 1-2%. (светочувствительные элементы для фотоаппаратов до сих пор делают из селена).

· В начале 50-х годов ХХ века был изобретен метод Чохральского, который применяется для выращивания кристаллического кремния.

· В 1954 г. в лаборатории компании "Bell Telephone" синтезировали силиконовый фотоэлектрический элемент с КПД 4%, в дальнейшем эффективность достигла 11%.

· В 1958 г. небольшие (менее 1 ватта) фотоэлектрические батареи питали радиопередатчик американского космического спутника "Авангард". Вообще, космические исследования сыграли важную роль в развитии фотоэлементов.

· Во время нефтяного кризиса 1973-74 гг. сразу несколько стран запустили программы по использованию фотоэлементов, что привело к установке и опробованию свыше 3100 фотоэлектрических систем только в Соединенных Штатах. Многие из них до сих пор находятся в эксплуатации.

фотоэлектрические элементы - student2.ru

Рынок фотоэлементов

фотоэлектрические элементы - student2.ru Современное состояние рынка фотоэлементов характеризуется достаточно стабильным ростом, порядка 20% в год, однако объемы производства фотоэлементов остаются довольно низкими. Производство модулей во всем мире в 1998 г. составило около 125 МВт, в то время как цена упала с 50 долларов за 1 ватт в 1976 г. до 5 долларов за 1 ватт в 1999 г. Тем не менее, киловатт-час электричества, выработанного фотоэлектрической системой, все еще дороже традиционной электроэнергии в 3-10 раз (в зависимости от конкретного местонахождения и вида системы). Таким образом, рынок фотоэлементов пока занимает небольшую нишу в мировой экономике. Но он продолжает стабильно расти в тех сегментах рынка, где фотоэлементы конкурентоспособны, например, в автономных, удаленных от электросети системах.

Во многих регионах мира прогресс весьма ощутим. Правительство Японии вкладывает 250 млн долларов в год в увеличение производственной мощности с 40 МВт (1997г.) до 190 МВт (2000г.). Европейские страны проводят собственные программы, стимулом к чему служит потребность в энергетической независимости и экологические соображения. Эти программы в сочетании с экологическими проблемами - такими, как изменение климата - способны значительно ускорить развитие этой отрасли. Компания "Shell Solar" построила в Германии крупнейший завод по производству фотоэлементов с годовым объемом производства в 10 МВт, который намечено довести до 25 МВт. Стоимость постройки завода -- 50 млн немецких марок.

фотоэлектрические элементы - student2.ru Применение фотоэлементов

Солнечные фотоэлементы являются вполне реальной технически и экономически выгодной альтернативой ископаемому топливу в ряде применений. Солнечный элемент может напрямую превращать солнечное излучение в электричество без применения каких-либо движущихся механизмов. Благодаря этому, срок службы солнечных генераторов довольно продолжителен. Фотоэлектрические системы хорошо зарекомендовали себя с самого начала промышленного применения фотоэлементов. К примеру, фотоэлементы служат основным источником питания для спутников на околоземной орбите с 1960-х годов. В отдаленных районах фотоэлементы обслуживают автономные энергоустановки с 1970-х. В 1980-х годах производители серийных потребительских товаров начали встраивать фотоэлементы во многие устройства: от часов и калькуляторов до музыкальной аппаратуры. В 1990-х предприятия энергоснабжения начали применять фотоэлементы для обеспечения мелких потребностей пользователей.

фотоэлектрические элементы - student2.ru фотоэлектрические элементы - student2.ru фотоэлектрические элементы - student2.ru

Фотоэлектрические установки качают воду, обеспечивают ночное освещение, заряжают аккумуляторы, подают электричество в общую энергосистему и т. д. Они работают в любую погоду. При переменной облачности они достигают 80% своей потенциальной производительности; в туманную погоду - около 50%, и даже при сплошной облачности они вырабатывают до 30% энергии.

В наше время можно найти не только фотоэлектрические панели. Разные фирмы предлагают фотоэлементы в виде легких, эластичных и прочных кровельных плит, а также ненесущих стен-перегородок для фасадных работ. Эти новинки делают фотоэлементы экономически более привлекательными при включении их в состав строительных материалов. В отдаленных районах фотоэлектрические установки являются наиболее рентабельным, надежным и долговечным источником энергии. В некоторых регионах фотоэлементы повышают конкурентоспособность систем, подключенных к электросети. Однако главное - что и в отдаленных, и в подсоединенных к электросетям местностях фотоэлектрические системы вырабатывают чистую энергию, получение которой не сопровождается загрязнением окружающей среды, в отличие от привычных электростанций.

фотоэлектрические элементы - student2.ru

Насосные установки, работающие на солнечных фотоэлементах, эффективны и экономически выгодны в условиях практически любого применения водных насосов. Энергетические компании США обнаружили, что экономичнее использовать водяные насосы на солнечной батарее, чем обслуживать распределительные электрические линии, ведущие к удаленным насосам. Некоторые коммунальные предприятия предлагают насосные установки на фотоэлементах для выполнения заявок клиентов.

В сельских районах находится и другое применение фотоэлектрическим системам - фотоэлектрические элементы - student2.ru зарядка и освещение электрических изгородей; обеспечение циркуляции воды, вентиляции, света и кондиционирования воздуха в теплицах и гидропонных сооружениях.

Фотоэлектрические модули снабжали электричеством воздушный шар "Breitling Orbiter 3" во время его беспосадочного полета вокруг земного шара. В течение трех недель в марте 1999 г. все оборудование на борту воздушного шара питалось от 20 модулей, подвешенных под корзиной. Каждый модуль был наклонен так, чтобы давать равномерный ток во время движения и заряжать пять аккумуляторов для навигационных приборов, питать систему спутниковой связи, обеспечивать освещение и нагрев воды. Все модули отлично работали на протяжении всего путешествия.

Фотоэлементы с успехом применяются для электрификации деревень. В наше время два миллиарда людей во всем мире живут без электричества. Большая часть из них - в развивающихся странах, где 75% населения не имеют доступа к электроэнергии. Удаленные деревни часто не подключены к сети.

Опыт показывает, что фотоэлементы служат экономически выгодным источником электричества для основных нужд, таких как:

· освещение;

· водозабор;

· средства связи;

· медицинские учреждения;

· местный бизнес.

Те, у кого нет доступа к электроэнергии из сети, часто пользуются ископаемыми видами топлива - керосином, дизельным топливом. С его использованием связан ряд проблем:

· Импорт ископаемого топлива истощает запас конвертируемой валюты в стране.

· Транспортировка топлива затрудняется отсутствием нормальной инфраструктуры.

· Обслуживание и ремонт генератора проблематичен из-за нехватки запасных частей.

· Генератор загрязняет окружающую среду выхлопами и создает сильный шум.

Электрическое освещение при помощи фотоэлементов более эффективно, чем керосиновые лампы, а установка фотоэлектрической системы обычно стоит дешевле, чем продление электросети. Более того, многие развивающиеся страны расположены в регионах с высоким уровнем солнечной радиации, то есть в изобилии располагают бесплатным источником энергии круглый год. Производство "солнечного электричества" просто и надежно, что доказывает опыт эксплуатации десятков тысяч фотоэлектрических систем во всем мире.

фотоэлектрические элементы - student2.ru

В ближайшие десятилетия значительная часть мирового населения познакомится с фотоэлектрическими системами. Благодаря им исчезнет традиционная необходимость сооружения крупных дорогостоящих электростанций и распределительных систем. По мере того, как стоимость фотоэлементов будет снижаться, а технология - совершенствоваться, откроется несколько потенциально огромных рынков фотоэлементов. К примеру, фотоэлементы, встроенные в стройматериалы, будут осуществлять вентиляцию и освещение домов. Потребительские товары - от ручного инструмента до автомобилей - выиграют в качестве от использования компонентов, содержащих фотоэлектрические компоненты. Коммунальные предприятия также смогут находить все новые способы применения фотоэлементов для удовлетворения потребностей населения.

фотоэлектрические элементы - student2.ru

Европейский Союз поставил своей целью удвоить долю возобновляемых источников энергии к 2010 г. Одним из важных компонентов является производство 1 млн фотоэлектрических систем (500000 встроенных в крыши зданий и экспорт 500000 сельских систем) общей установленной мощностью 1 ГВт. Фирма "BP Amoco" (один из мировых лидеров продаж нефтепродуктов) собирается использовать солнечную энергию на 200 своих новых станциях обслуживания в Британии, Австралии, Германии, Австрии, Швейцарии, Нидерландах, Японии, Португалии, Испании, Франции и США. Программа стоимостью 50 млн долларов включает в себя применение 400 солнечных панелей, общей мощностью 3,5 МВт и снижение выбросов углекислого газа на 3500 тонн ежегодно. Благодаря этому проекту "BP Amoco" станет одним из крупнейших в мире потребителей солнечного электричества, а также одним из крупнейших производителей солнечных элементов и модулей. Солнечные панели будут вырабатывать больше электричества, чем нужно для освещения и водяных насосов, поэтому система будет подключена к сети. Днем излишек электроэнергии будет подаваться в сеть, а ночью из нее будет пополняться недостаток энергии. Мировой рынок фотоэлементов к 2010 году должен составить 1000 МВт, а к 2050 г. -- 5 млн МВт, если верить прогнозу президента компании "BP Solar".

фотоэлектрические элементы - student2.ru фотоэлектрические элементы - student2.ru

ТЕХНОЛОГИЯ

Солнечные фотоэлектрические системы просты в обращении и не имеют движущихся механизмов, однако сами фотоэлементы содержат сложные полупроводниковые устройства, аналогичные используемым для производства интегральных схем. В основе действия фотоэлементов лежит физический принцип, при котором электрический ток возникает под воздействием света между двумя полупроводниками с различными электрическими свойствами, находящимися в контакте друг с другом. Совокупность таких элементов образует фотоэлектрическую панель, либо модуль. Фотоэлектрические модули, благодаря своим электрическим свойствам, вырабатывают постоянный, а не переменный ток. Он используется во многих простых устройствах, питающихся от батарей. Переменный же ток, напротив, меняет свое направление через регулярные промежутки времени. Именно этот тип электричества поставляют энергопроизводители, он используется для большинства современных приборов и электронных устройств. В простейших системах постоянный ток фотоэлектрических модулей используется напрямую. Там же, где нужен переменный ток, к системе необходимо добавить инвертор, который преобразует постоянный ток в переменный.

фотоэлектрические элементы - student2.ru

ФОТОЭЛЕМЕНТЫ

фотоэлектрические элементы - student2.ru Современное производство фотоэлементов практически полностью основано на кремнии. Около 80% всех модулей производится с использованием поли- или монокристаллического кремния, а остальные 20% используют аморфный кремний. Кристаллические фотоэлементы - наиболее распространенные, обычно они имеют синий цвет с отблеском. Аморфные, или некристаллические - гладкие на вид и меняют цвет в зависимости от угла зрения. Монокристаллический кремний имеет наилучшую эффективность (около 14%), но он дороже, чем поликристаллический, эффективность которого в среднем составляет 11%. Аморфный кремний широко применяется в небольших приборах, таких как часы и калькуляторы, но его эффективность и долгосрочная стабильность значительно ниже, поэтому он редко применяется в силовых установках.

В опытной разработке находятся несколько типов альтернативных тонкопленочных фотоэлементов, которые в будущем могут завоевать рынок. Наиболее отлаженными из исследуемых в настоящее время тонкопленочных систем являются фотоэлементы из следующих материалов:

· аморфный кремний (a-Si: H),

· теллурид/сульфид кадмия (CTS),

· медно-индиевый или медно-галлиевый диселенид (CIS or CIGS), тонкопленочный кристаллический кремний (c-Si film),

· нанокристаллические сенсибилизированные красителем электрохимические фотоэлементы (nc-dye).

фотоэлектрические элементы - student2.ru Фотоэлемент представляет собой "сэндвич" из кремния - второго по распространенности на Земле вещества. Девяносто девять процентов современных солнечных элементов изготавливают из кремния (Si), а остальные построены на том же принципе, что и кремниевые солнечные элементы. На один слой кремния наносится определенное вещество, благодаря которому образуется избыток электронов. Получается отрицательно заряженный ("N") слой. На другом слое создается недостаток электронов, он становится положительно заряженным ("P"). Собранные вместе с проводниками, эти две поверхности образуют светочувствительный электронно-дырочный переход. Он называется полупроводником, так как, в отличие от электропровода, проводит ток только в одном направлении - от отрицательного к положительному. При воздействии солнца или другого интенсивного источника света возникает постоянный ток напряжением примерно в 0,5 Вольт. Сила тока (ампер) пропорциональна световой энергии (количеству фотонов). В любой фотоэлектрической системе напряжение почти постоянно, а ток пропорционален размеру фотоэлементов и интенсивности света.

Фотоэлементы производятся из сверхчистого кремния, смешанного в точной пропорции с некоторыми другими веществами. Сверхчистая кремниевая подложка, из которой делают фотоэлементы, стоит очень дорого. Количества сверхчистого кремния, необходимого для изготовления одного фотоэлектрического модуля мощностью 50 Вт, было бы достаточно для интегральных схем примерно двух тысяч компьютеров. Кроме того, в фотоэлементах присутствуют алюминий, стекло и пластмасса - недорогие и многократно используемые материалы.

фотоэлектрические элементы - student2.ru

СОЛНЕЧНЫЕ МОДУЛИ

uacom/images/stories/raznoe/drugie-ist-energii/solnce/pvpanel109.jpg" />Солнечный модуль - это батарея взаимосвязанных солнечных элементов, заключенных под стеклянной крышкой. Чем интенсивнее свет, падающий на фотоэлементы и чем больше их площадь, тем больше вырабатывается электричества и тем больше сила тока. Модули классифицируются по пиковой мощности в ваттах (Втп). Ватт - единица измерения мощности. Один пиковый ватт - техническая характеристика, которая указывает на значение мощности установки в определенных условиях, т.е. когда солнечное излучение в 1 кВт/м2 падает на элемент при температуре 25 оC. Такая интенсивность достигается при хороших погодных условиях и Солнце в зените. Чтобы выработать один пиковый ватт, нужен один элемент размером 10 x 10 см. Более крупные модули, площадью 1 м x 40 см, вырабатывают около 40-50 Втп. Однако солнечная освещенность редко достигает величины 1 кВт/м2. Более того, на солнце модуль нагревается значительно выше номинальной температуры. Оба эти фактора снижают производительность модуля. В типичных условиях средняя производительность составляет около 6 Вт·ч в день и 2000 Вт·ч в год на 1 Втп. 5 ватт-час - это количество энергии, потребляемое 50-ваттной лампочкой в течение 6 минут (50 Вт x 0,1 ч = 5 Вт·ч) или портативным радиоприемником в течение часа (5 Вт x 1 ч = 5 Вт·ч).

фотоэлектрические элементы - student2.ru

Хотя качество продукции не всегда одинаково, большинство международных компаний производят достаточно надежные фотоэлектрические модули со сроком эксплуатации до 20 лет. На сегодняшний день производители модулей гарантируют указанную мощность на период до 10 лет. Решающим критерием для сравнения разных типов модулей является цена 1 ватта пиковой мощности. Другими словами, можно получить больше электроэнергии за те же деньги, используя модуль ценой 569 долларов с пиковой мощностью 120 Втп (4,74 доллара за 1 Втп), чем с помощью "дешевого" модуля мощностью 90 Втп , который стоит 489 долларов (5,43 доллара за 1 Втп). Номинальный КПД менее важен при выборе системы.

фотоэлектрические элементы - student2.ru

ПРЕИМУЩЕСТВА

Высокая надежность
Фотоэлементы разрабатывались для использования в космосе, где ремонт слишком дорог, либо вообще невозможен. До сих пор фотоэлементы являются источником питания практически для всех спутников на земной орбите, потому что они работают без поломок и почти не требуют технического обслуживания.

Низкие текущие расходы
Фотоэлементы работают на бесплатном топливе - солнечной энергии. Благодаря отсутствию движущихся частей, они не требуют особого ухода. Рентабельные фотоэлектрические системы являются идеальным источником электроэнергии для станций связи в горах, навигационных бакенов в море и других потребителей, расположенных вдали от линий электропередач.

Экологичность
Поскольку при использовании фотоэлектрических систем не сжигается топливо и не имеется движущихся частей, они являются бесшумными и чистыми. Эта их особенность чрезвычайно полезна там, где единственной альтернативой для получения света и электропитания являются дизель-генераторы и керосиновые лампы.

Модульность
Фотоэлектрическую систему можно довести до любого размера. Владелец такой системы может увеличить либо уменьшить ее, если изменится его потребность в электроэнергии. По мере возрастания энергопотребления и финансовых возможностей, домовладелец может каждые несколько лет добавлять модули. Фермеры могут обеспечивать скот питьевой водой при помощи передвижных насосных систем.

Низкие затраты на строительство
Размещают фотоэлектрические системы обычно близко к потребителю, а значит, линии электропередачи не нужно тянуть на дальние расстояния, как в случае подключения к линиям электропередач. Вдобавок, не нужен понижающий трансформатор. Меньше проводов означает низкие затраты и более короткий период установки.

фотоэлектрические элементы - student2.ru

Наши рекомендации