Тема 6 Сфера применения Data Mining. Применение Data Mining для решения бизнес-задач
Следует отметить, что на сегодняшний день наибольшее распространение технология Data Mining получила при решении бизнес-задач. Возможно, причина в том, что именно в этом направлении отдача от использования инструментов Data Mining может составлять, по некоторым источникам, до 1000% и затраты на ее внедрение могут достаточно быстро окупиться.
Сейчас технология Data Mining используется практически во всех сферах деятельности человека, где накоплены ретроспективные данные.
Мы будем рассматривать четыре основные сферы применения технологии Data Mining подробно: наука, бизнес, исследования для правительства и Web-направление.
· Применение Data Mining для решения бизнес-задач. Основные направления: банковское дело, финансы, страхование, CRM, производство, телекоммуникации, электронная коммерция, маркетинг, фондовый рынок и другие.
· Применение Data Mining для решения задач государственного уровня. Основные направления: поиск лиц, уклоняющихся от налогов; средства в борьбе с терроризмом.
· Применение Data Mining для научных исследований. Основные направления: медицина, биология, молекулярная генетика и генная инженерия, биоинформатика, астрономия, прикладная химия, исследования, касающиеся наркотической зависимости, и другие.
· Применение Data Mining для решения Web-задач. Основные направления: поисковые машины (search engines), счетчики и другие.
Банковское дело
Технология Data Mining используется в банковской сфере для решения ряда типичных задач.
Задача "Выдавать ли кредит клиенту?"
Классический пример применения Data Mining в банковском деле – решение задачи определения возможной некредитоспособности клиента банка. Эту задачу также называют анализом кредитоспособности клиента или "Выдавать ли кредит клиенту?".
Без применения технологии Data Mining задача решается сотрудниками банковского учреждения на основе их опыта, интуиции и субъективных представлений о том, какой клиент является благонадежным. По похожей схеме работают системы поддержки принятия решений и на основе методов Data Mining. Такие системы на основе исторической (ретроспективной) информации и при помощи методов классификации выявляют клиентов, которые в прошлом не вернули кредит.
Задача "Выдавать ли кредит клиенту?" при помощи методов Data Mining решается следующим образом. Совокупность клиентов банка разбивается на два класса (вернувшие и не вернувшие кредит); на основе группы клиентов, не вернувших кредит, определяются основные "черты" потенциального неплательщика; при поступлении информации о новом клиенте определяется его класс ("вернет кредит", "не вернет кредит").
Задача привлечения новых клиентов банка
С помощью инструментов Data Mining возможно провести классификацию на "более выгодных" и "менее выгодных" клиентов. После определения наиболее выгодного сегмента клиентов банку есть смысл проводить более активную маркетинговую политику по привлечению клиентов именно среди найденной группы.
Другие задачи сегментации клиентов
Разбивая клиентов при помощи инструментов Data Mining на различные группы, банк имеет возможность сделать свою маркетинговую политику более целенаправленной, а потому - эффективной, предлагая различным группам клиентов именно те виды услуг, в которых они нуждаются.
Задача управления ликвидностью банка. Прогнозирование остатка на счетах клиентов
Проводя прогнозирования временного ряда с информацией об остатках на счетах клиентов за предыдущие периоды, применяя методы Data Mining, можно получить прогноз остатка на счетах в определенный момент в будущем. Полученные результаты могут быть использованы для оценки и управления ликвидностью банка.
Задача выявления случаев мошенничества с кредитными карточками
Для выявления подозрительных операций с кредитными карточками применяются так называемые "подозрительные стереотипы поведения", определяемые в результате анализа банковских транзакций, которые впоследствии оказались мошенническими. Для определения подозрительных случаев используется совокупность последовательных операций на определенном временном интервале. Если система Data Mining считает очередную операцию подозрительной, банковский работник может, ориентируясь на эту информацию, заблокировать операции с определенной карточкой.
Страхование
Страховой бизнес связан с определенным риском. Здесь задачи, решаемые при помощи Data Mining, сходны с задачами в банковском деле.
Информация, полученная в результате сегментации клиентов на группы, используется для определения групп клиентов. В результате страховая компания может с наибольшей выгодой и наименьшим риском предлагать определенные группы услуг конкретным группам клиентов.
Задача выявление мошенничества решается путем нахождения некого общего стереотипа поведения клиентов-мошенников.
Телекоммуникации
В сфере телекоммуникаций достижения Data Mining могут использоваться для решения задачи, типичной для любой компании, которая работает с целью привлечения постоянных клиентов, - определения лояльности этих клиентов. Необходимость решения таких задач обусловлена жесткой конкуренцией на рынке телекоммуникаций и постоянной миграцией клиентов от одной компании в другую. Как известно, удержание клиента намного дешевле его возврата. Поэтому возникает необходимость выявления определенных групп клиентов и разработка наборов услуг, наиболее привлекательных именно для них. В этой сфере, так же как и во многих других, важной задачей является выявление фактов мошенничества.
Помимо таких задач, являющихся типичными для многих областей деятельности, существует группа задач, определяемых спецификой сферы телекоммуникаций.
Электронная коммерция
В сфере электронной коммерции Data Mining применяется для формирования рекомендательных систем и решения задач классификации посетителей Web-сайтов. Такая классификация позволяет компаниям выявлять определенные группы клиентов и проводить маркетинговую политику в соответствии с обнаруженными интересами и потребностями клиентов. Технология Data Mining для электронной коммерции тесно связана с технологией Web Mining.