Шпиндельные узлы. Составные элементы шпиндельного узла
Шпиндельный узел станка состоит из: шпинделя, опор, приводного элемента. В нем выделяют передний конец и межопорные участки.
На шпиндель действуют следующие нагрузки:
1. Силы резания.
2. Силы в приводе.
3. Инерционные силы.
4. Центробежные силы.
Проектирование шпиндельных узлов включает:
· Выбор типа привода
· Выбор опор
· Выбор устройства для их смазывания
· Выбор защиты от загрязнения
· Определение диаметра шпинделя
· Определение расстояние между опорами
· Разгрузка конструкции всех элементов
ШУ должны удовлетворять следующим требованиям:
1. Точность вращения, характеризуется радиальным и осевым биением переднего конца шпинделя. Оказывает сильное влияние на точность обрабатываемой детали. Допустимое значение шпинделя по ГОСТ должно соответствовать следующим параметрам (для универсальных станков):
1) Радиальное биение центральной шейки шпинделя
2) Радиальное биение конического отверстия в шпинделе
3) Радиальное биение оправки, установленной в коническое отверстие
4) Торцовое биение опорного буртика шпинделя.
Биение шпинделя специальных станков не должно превосходить 1/3 допуска на лимитирующий размер обрабатываемой на станке детали.
2. Жёсткость ШУ, характеризуется деформациями шпинделя под действием нагрузок [Н/мкм].
Допустимая минимальная жесткость переднего конца шпинделя обычных станков составляет порядка 200 Н/мкм. Для прецизионных 400 Н/мкм.
Допустимый угол поворота шпинделя в передней опоре, сопровождающийся неравномерным распределением нагрузки между телами качения подшипников принимается равным: 0,0001…0,00015 рад.
Угол поворота шпинделя под приводным зубчатым колесом: 0,00008…0,0001 рад.
Прогиб в этом месте не должен превышать 0,01m.
Для обеспечения работоспособности шпиндельных подшипников необходимо следующее соотношение между диаметром шпинделя и межопорным расстоянием:
3. Температурные деформации ШУ. Оказывают влияние на точность обработки и работоспособность опор.
Допустимый нагрев наружного кольца подшипника связан с классом точности: H - 70 ; П – 50-55 ;В – 40-45 ;А – 35-40 ;С – 28-30 .
4. Виброустойчивость. Существенно влияет на общую устойчивость несущей системы и всего станка. Чем массивнее, тем больше виброустойчивость. Демпфирующие свойства опор и АЧХ шпиндельного узла существенно влияют на шероховатость и волнистость обрабатываемой поверхности, а также определяет предельно допустимые режимы резания. Для повышения виброустойчивости в станок вводят виброгасители, активные и пассивные демпфирующие устройства.
5. Долговечность ШУ.Это способность узла сохранять первоначальную точность вращения. Этот параметр напрямую зависит от долговечности опор шпинделя.
6. Быстрое и надежное крепление инструмента, приспособления, детали. Здесь необходимо обеспечить высокую точность центрирования (конусами).
Выполнение совокупности вышеупомянутых требований предъявляемых к ШУ обеспечивается в первую очередь за счет правильного выбора конструкции и материала шпинделя, а также обоснованного выбора типа и конструкции опор.
Приводы шпинделей.
Для передачи крутящего момента на шпиндель применяют зубчатую или ременную передачу, а также муфту расположенную на заднем консольном конце шпинделя. Тип приводного элемента выбирают в зависимости от частоты вращения шпинделя, передаваемого на него крутящего момента, компоновки станка, требования к плавности вращения шпинделя.
Зубчатая передача способна передавать большой крутящий момент, проста по конструкции и компактна. Но погрешности передачи снижают плавность вращения шпинделя и вызывают дополнительные динамические нагрузки в шпинделе.
Зубчатую передачу применяют когда частота вращения шпинделя меньше 2000-3000 оборотов в минуту. Но при точном изготовлении передачи может применяться и при больших частотах вращения шпинделя. Положение приводного зубчатого колеса оказывает влияние на прогиб переднего конца шпинделя.
Ременная передача обеспечивает плавное вращение шпинделя. Снижает динамические нагрузки в приводе станка, на котором производится прерывистое резание. Но эта передача имеет большие габариты, т.к. для повышения точности шпиндельного узла шкив делают разгруженным.
Ременную передачу применяют при разных частотах вращения двигателя, в том числе и при высоких(6000+) когда окружная скорость достигает 60-100 м/с.
В станках также применяют мотор-шпиндели. В их состав входит асинхронный или частотно-регулируемый асинхронный двигатель, ротор которого закреплен на шпинделе между передней и задней опорами. Кроме того в состав морор-шпинделей включают систему принудительного охлаждения с блоком электро-вентилятора и фильтрами для очистки охлаждающего воздуха, узел встроенной температурной защиты, а также измерительный преобразователь углового положения шпинделя. Применение мотор-шпинделей позволяет уменьшить массу станка, потери энергии, уровни вибрации и шума.
В особо высокоточных станках применяют главный привод с отдельным от шпиндельной бабки регулируемым электродвигателем,вал которого соединен со шпинделем эластичной муфтой со встроенным теплоизолирующим элементом. В станке с нормальной точностью – электро-двигатель с шпинделем соединен жесткой муфтой.
Чтобы полностью исключит передачу возмущений от электро-двигателя к шпинделю применяют инерционный привод.Шпиндель, соединенный с источником энергии, разгоняется до рабочей скорости, затем отключается от привода. Для увеличения запаса энергии используют маховик.