Магнитные стали и сплавы
Магнитные стали и сплавы классифицируют на магнитно-твердые, магнитно-мягкие и парамагнитные.
Магнитно-твердые стали и сплавы (ГОСТ 17809—72) по своим потребительским свойствам характеризуются высокими коэрцитивной силой и остаточной индукцией и соответственно высокой магнитной энергией.
По химическому составу промышленные магнитно-твердые стали и сплавы в порядке возрастания их коэрцитивной силы и магнитной энергии представляют собой:
· высокоуглеродистые стали (1,2..1,4 % С);
· высокоуглеродистые (1 % С) сплавы железа с хромом (до 2,8 %), легированные кобальтом;
· высокоуглеродистые сплавы железа, алюминия, никеля и кобальта, называемые алнико.
Легирующие элементы повышают, главным образом, коэрцитивную силу и магнитную энергию, а также улучшают температурную и механическую стабильности постоянного магнита.
Обозначают магнитно-твердые стали индексом «Е», указывая далее буквой с цифрой наличие хрома и его содержание в целых процентах (например, ЕХ2, ЕХЗ).
Магнитно-твердые стали и сплавы используются для изготовления различного рода постоянных магнитов. В промышленности наиболее широко применяют сплавы типа алнико (ЮНДК15, ЮН14ДК25А, ЮНДК31ТЗБА и др.). Эти сплавы тверды, хрупки и не поддаются деформации, поэтому магниты из них изготовляют литьем. После литья проводят только шлифование.
Магнитно-мягкие стали и сплавы отличаются легкой намагничиваемостью в относительно слабых магнитных полях. Их основными потребительскими свойствами являются высокая магнитная проницаемость, низкая коэрцитивная сила, малые потери на вихревые токии при перемагничивании. Эти свойства обеспечивает гомогенная (чистый металл или твердый раствор) структура, чистая от примесей. Магнитно-мягкие материалы должны быть полностью рекристаллизованы для устранения внутренних напряжений, так как даже слабый наклеп существенно снижает магнитную проницаемость и повышает коэрцитивную силу. Магнитная проницаемость возрастает при микроструктуре из более крупных зерен.
По химическому составу промышленно применяемые магнитно-мягкие (электротехнические) стали и сплавы делятся на:
§ низкоуглеродистые (0,05...0,005 % С) с содержанием кремния 0.8...6,0 %;
§ сплавы железа с никелем.
Железоникелевые сплавы с содержанием никеля 36...83 %, называемые пермаллоями, обладают наиболее высокими потребительскими свойствами. Для улучшения тех или иных характеристик в их состав вводят хром, молибден, медь и др. Величина их магнитной проницаемости превосходит аналогичные показатели для низкоуглеродистых сталей в 15.103 раз. Пермаллои — легко деформируемые сплавы. Однако деформация значительно ухудшает их первоначальные магнитные характеристики. Для восстановления свойств проводят термообработку по строго разработанному режиму: скорость нагрева (до 900...1000 °С), выдержка и скорость охлаждения. Применяют их в аппаратуре, работающей в слабых частотных полях (телефон, радио).
Для электротехнических сталей (ГОСТ 21427—83) принята маркировка, основанная на кодировании. В обозначении марки используют четыре цифры, причем их значения соответствуют кодам, содержащим следующую информацию:
первый — структура материала (по наличию и степени текстуры) и вид прокатки (горячая или холодная деформация);
второй — химический состав по содержанию кремния;
третий — величины потерь тепловых и на гистерезис;
четвертый — значение нормируемого потребительского свойства.
Электротехнические стали изготавливают в виде рулонов, листов и резанной ленты. Они предназначены для изготовления магнитопроводов постоянного и переменного тока, якорей и полюсов электротехнических машин, роторов, статоров, магнитных цепей трансформаторов и др.
Парамагнитными сталямиявляются аустенитные стали 12Х18Н10Т, 17Х18Н9, 55Г9Н9ХЗ, 40Г14Н9Ф2 и др. Их химический состав базируется на системе Fe + Cr + Ni + Ti. Основными потребительскими свойствами являются немагнитность и высокая прочность. Необходимая прочность достигается при деформационном и дисперсионном упрочнении изделий. К недостаткам этих сталей и сплавов следует отнести низкий предел текучести (150...350 МПа), что ограничивает область применения только малонагруженными конструкциями.
Парамагнитные стали и сплавы применяют для изготовления немагнитных деталей конструкций в электротехнике, приборостроении, судостроении и специальных областях техники. Повышение износостойкости деталей, работающих в узлах трения, достигается азотированием (стали 40Г14Н9Ф2 и др.).
Чугуны
Чугун отличается от стали: по составу – более высокое содержание углерода и примесей; по технологическим свойствам – более высокие литейные свойства, малая способность к пластической деформации, почти не используется в сварных конструкциях.
В зависимости от состояния углерода в чугуне различают:
· белый чугун – углерод в связанном состоянии в виде цементита, в изломе имеет белый цвет и металлический блеск;
· серый чугун – весь углерод или большая часть находится в свободном состоянии в виде графита, а в связанном состоянии находится не более 0,8 % углерода. Из-за большого количества графита его излом имеет серый цвет;
· половинчатый – часть углерода находится в свободном состоянии в форме графита, но не менее 2 % углерода находится в форме цементита. Мало используется в технике.