Во втором классе учащиеся должны знать название компонентов действий сложения и вычитания
МЕТОДИКА ОБУЧЕНИЯ АРИФМЕТИЧЕСКИМ ДЕЙСТВИЯМ И ФОРМИРОВАНИЯ ВЫЧИСЛИТЕЛЬНЫХ НАВЫКОВ
1. Сложение и вычитание в пределах двадцати.
2. Сложение, вычитание, умножение и деление в пределах 20.
3. Таблица умножения.
4. Арифметические действия в пределах 1000.
5. Арифметические действия над многозначными числами.
Обучение сложению и вычитанию в пределах 10.
С арифметическими действиями учащиеся знакомятся сразу же после изучения числа 2. Изучение каждого из чисел первого десятка (кроме 1), завершается изучением действий сложения и вычитания в пределах этого числа. Действие сложение и вычитание изучаются параллельно.
Учащиеся знакомятся со знаками сложения - плюсом (+), вычитания- минусом (-) и знаком равенства - равно (=).
При изучении данной темы учащиеся должны овладеть приемами вычисления, получить прочные вычислительные навыки, заучить результаты сложения и вычитания в пределах 10, а также состав чисел первого 10, узнавать и показывать компоненты и результаты двух арифметических действий и понимать их названия в речи учителя.
По мере овладения учащимися натуральной последовательностью чисел и свойством этого ряда нужно знакомить и с приемами сложения и вычитания, опирающимся на это свойство натурального ряда чисел. Дети учатся этим приемам прибавлять и вычитать единицу из числа, т.е. присчитывать и отсчитывать по 1.
Когда учащиеся научились прибавлять и вычитать по одному, надо учить их прибавлять по два.
Когда учащиеся овладели приемами присчитывания, учитель знакомит их с приемами отсчитывания.
Если приемами присчитывания ученики первого класса овладевают довольно быстро, то приемами отсчитывания - намного медленнее.
Трудность состоит в том, что прием отсчитывания основан на хорошем знании обратного счета, а обратный счет для многих учащихся первого класса труден. Кроме того, ученики плохо запоминают - сколько нужно отнять, сколько уже отняли, сколько ещё надо отнять.
При изучении каждого числа первого десятка учащиеся получают представление и о составе этих чисел.
В начале необходимо давать такие упражнения, в которых одно из слагаемых воспринимаются детьми наглядно, а второе они отыскивают по представлению.
При выполнении действий сложения и вычитания в пределах данного числа вводятся решение примеров с отсутствующим компонентом. Его обозначают точками, рамками, знаками вопросов и т.д., например:
[] + I – 3, 4 +... = б, ? – 2 = 4. б - ? = 2.
Запишем 1-1=0 (отсутствие предметов обозначают цифры О) Решаются еще примеры, когда разность равна нулю.
Нуль сравнивается с единицей. Устанавливается, что ноль меньше единицы, единица больше нуля, поэтому ноль должен стоять перед единицей. Однако учитель должен помнить, что ноль не относится к натуральным числам. Поэтому ряд натуральных чисел должен начинаться с единицы.
Вводить число ноль в качестве вычитаемого, а потом и слагаемого следует на большом числе упражнений. Смысл действий с нулем будет лучше понять учащимся, если ноль в качестве вычитаемого и ноль в качестве слагаемого будет вводиться не одновременно. Затем проводятся упражнения на дифференциацию примеров, в которых ноль будет слагаемым и вычитаемым.
Полезно показать учащимся и зависимость изменения суммы от применения слагаемых, а также изменения остатка от изменения уменьшаемого.
Учитель первого класса должен обращать внимание учащихся на то, что сумма всегда больше каждого из слагаемых, а остаток всегда меньше уменьшаемых.
Уменьшаемое больше или равно вычитаемому, в противном случае вычитание произвести нельзя.
Уже с первого класса ученики должны быть приучены к проверке правильности решения примеров.
Овладение вычислительными приемами сложения и вычитания в пределах 20 основано на хорошем знании сложения и вычитания в пределах 10, знание нумерации и состава чисел в пределах 20.
При изучении действий сложения и вычитания в пределах 20, как и при изучении соответствующих действий в пределах 10, большое значение имеет наглядность и практическая деятельность с пособиями самих учащихся. Поэтому все виды наглядных пособий, используемых при изучении нумерации, найдут применение и при изучении арифметических действий.
Действия сложения и вычитания целесообразнее изучать параллельно после знакомства с определенным случаем сложения изучать соответствующий случай вычитания сопоставления со сложением.
Во втором классе учащиеся должны знать название компонентов действий сложения и вычитания.
1. Приемы сложения и вычитания, основанные на знаниях десятичного состава чисел.
2. Сложение и вычитание без перехода через десяток:
а) к двухзначному числу прибавляется однозначное число. Из двухзначного числа вычитается однозначное число;
б) получение суммы 20 и вычитание однозначного числа из 20;
в) вычитание из двухзначного числа двухзначного: 15-12, 20-15.
Решение примеров такого вида можно объяснить разными приемами:
1. Разложить уменьшаемое и вычитаемое на десятки и единицы и вычитать десятки из десятков, единицы из единиц.
2. Разложить вычитаемое на десяток и единицы. Вычитать из уменьшаемого десятки, а из полученного числа - единицы.
3. Сложение и вычитание с переходом через ряд представляет наибольшие трудности для учащихся, с психофизическими нарушениями. вычитание с переходом через десяток тоже требует ряд операций;
- уменьшаемое разложить на десяток и единицы
- вычитаемое разложить на два числа, одно из которых равно числу уменьшаемого единицы
- вычесть единицы
- вычесть из десятка оставшееся число единиц
Подготовительная работа должна заключаться в повторении:
а) таблица сложения и вычитания в пределах 10,
б) состава чисел первого десятка (всех возможных вариантов
из двух чисел)
в) дополнение чисел до 10
г) разложение двухзначного числа на десятки и единицы
д) вычитание из десяти однозначных чисел
е) рассмотрение случаев вида 17-7, 15-5.