Порядок визначення складових поля спрямованих хвиль

Для визначення виразів для складових поля спрямованих хвиль потрібно розв’язати векторні рівняння (1.3.5) та (1.3.6), а оскільки кожному з них відповідають три скалярних рівняння, то необхідно розв’язати шість рівнянь. Такий шлях є дуже громіздким. Виберемо інший шлях: розв’яжемо два скалярних рівняння Гельмгольця відносно повздовжніх складових Порядок визначення складових поля спрямованих хвиль - student2.ru та Порядок визначення складових поля спрямованих хвиль - student2.ru , а чотири поперечних складових, скориставшись виразами для них, визначимо через знайдені повздовжні складові.

Для отримання таких виразів скористаємося проекціями 1-го та 2-го векторних рівнянь Максвелла, записаних у диференціальній формі для монохроматичних коливань:

Порядок визначення складових поля спрямованих хвиль - student2.ru

Декартова система координат

Проекції на вісь OX:

Порядок визначення складових поля спрямованих хвиль - student2.ru (1.4.1)

Порядок визначення складових поля спрямованих хвиль - student2.ru (1.4.2)

Проекції на вісь OY:

Порядок визначення складових поля спрямованих хвиль - student2.ru (1.4.3)

Порядок визначення складових поля спрямованих хвиль - student2.ru (1.4.4)

Оскільки у спрямовуючій системі Порядок визначення складових поля спрямованих хвиль - student2.ru , Порядок визначення складових поля спрямованих хвиль - student2.ru , Порядок визначення складових поля спрямованих хвиль - student2.ru , Порядок визначення складових поля спрямованих хвиль - student2.ru , складові з похідними по Z можна переписати так:

Порядок визначення складових поля спрямованих хвиль - student2.ru Порядок визначення складових поля спрямованих хвиль - student2.ru Порядок визначення складових поля спрямованих хвиль - student2.ru Порядок визначення складових поля спрямованих хвиль - student2.ru

тоді вирази (1.4.1) – (1.4.4) матимуть вигляд:

Порядок визначення складових поля спрямованих хвиль - student2.ru , Порядок визначення складових поля спрямованих хвиль - student2.ru ; (1.4.5)

Порядок визначення складових поля спрямованих хвиль - student2.ru , Порядок визначення складових поля спрямованих хвиль - student2.ru (1.4.6)

Розв’язуючи систему рівнянь (1.4.5) відносно Порядок визначення складових поля спрямованих хвиль - student2.ru та систему (1.4.6) відносно Порядок визначення складових поля спрямованих хвиль - student2.ru , отримаємо:

Порядок визначення складових поля спрямованих хвиль - student2.ru , (1.4.7)

Порядок визначення складових поля спрямованих хвиль - student2.ru , (1.4.8)

Порядок визначення складових поля спрямованих хвиль - student2.ru , (1.4.9)

Порядок визначення складових поля спрямованих хвиль - student2.ru . (1.4.10)

Циліндрична система координат

Діючи аналогічно, будемо мати:

Порядок визначення складових поля спрямованих хвиль - student2.ru , (1.4.11)

Порядок визначення складових поля спрямованих хвиль - student2.ru , (1.4.12)

Порядок визначення складових поля спрямованих хвиль - student2.ru , (1.4.13)

Порядок визначення складових поля спрямованих хвиль - student2.ru . (1.4.14)

Оскільки у хвилях Етипу складова Порядок визначення складових поля спрямованих хвиль - student2.ru , а у хвилях Нтипу складова Порядок визначення складових поля спрямованих хвиль - student2.ru , то фактично праві частини виразів для поперечних складових через повздовжні (1.4.7) - (1.4.14) будуть удвічі коротшими для хвиль конкретних типів.

Дисперсія в хвилеводах

Фазова швидкість, під якою будемо розуміти швидкість руху фазового фронту спрямованої хвилі вздовж осі OZ, визначається за формулою: Порядок визначення складових поля спрямованих хвиль - student2.ru враховуючи (1.3.7) цю формулу перепишемо так: Порядок визначення складових поля спрямованих хвиль - student2.ru

Враховуючи (1.3.10) отримаємо:

Порядок визначення складових поля спрямованих хвиль - student2.ru (1.5.1)

Якщо хвилевід заповнений діелектриком з параметрами Порядок визначення складових поля спрямованих хвиль - student2.ru то останній вираз слід переписати так:

Порядок визначення складових поля спрямованих хвиль - student2.ru . (1.5.2)

Хвиля, що поширюється вздовж хвилеводу представляє собою гармонічне коливання, періодичність якого буде визначатися довжиною хвилі у хвилеводі (фазовою довжиною хвилі): Порядок визначення складових поля спрямованих хвиль - student2.ru де Т– період монохроматичної хвилі Порядок визначення складових поля спрямованих хвиль - student2.ru . Добуток Порядок визначення складових поля спрямованих хвиль - student2.ru - довжині хвилі генератора. З урахуванням сказаного вираз (1.5.2) матиме вигляд:

Порядок визначення складових поля спрямованих хвиль - student2.ru . (1.5.3)

Зваживши на те, що групова швидкість Порядок визначення складових поля спрямованих хвиль - student2.ru , нескладно отримати формулу для визначення групової швидкості спрямованої хвилі:

Порядок визначення складових поля спрямованих хвиль - student2.ru . (1.5.4)

Залежності фазової та групової швидкості від довжини хвилі генератора називається дисперсними характеристиками спрямованої хвилі, а саме явище – дисперсією. Зауважимо, що у спрямовуючій системі на відміну від необмеженого простору дисперсія має місце і при відсутності втрат, про що свідчить вираз (1.5.1).

Порядок визначення складових поля спрямованих хвиль - student2.ru

Рисунок 1.5.1

Як випливає з виразу (1.5.1) та рис. 1.5.1 фазова швидкість спрямованої хвилі завжди перевищує швидкість світла і при Порядок визначення складових поля спрямованих хвиль - student2.ru вона стає нескінченно великою. Групова ж швидкість при наближенні Порядок визначення складових поля спрямованих хвиль - student2.ru до Порядок визначення складових поля спрямованих хвиль - student2.ru зменшується до нуля.

Пояснимо це, скориставшись концепцією парціальних хвиль. У двоплощинному хвилеводі, наприклад, парціальна плоска хвиля поширюється вздовж хвилеводу відбиваючись від нижньої та верхньої ідеально – провідних площин. Нехай парціальна плоска

Порядок визначення складових поля спрямованих хвиль - student2.ru

Рисунок 1.5.2

Хвиля, збуджена у точці О(рис.1.5.2), зі швидкістю спрямує до верхньої площини хвилеводу і падає на неї у точці Апід кутом φ За одну секунду фронт Ф цієї хвилі, залишаючись перпендикулярним до вектора її швидкості с, переміститься на відстань ОК. Отже, довжина відрізка ОК дорівнює довжині вектора фазової швидкості хвилі (швидкості переміщення фронту хвилі вздовж хвилеводу, яку будемо називати швидкістю хвилі у хвилеводі) Порядок визначення складових поля спрямованих хвиль - student2.ru . Енергія хвилі за цей час вздовж хвилеводу пройде відстань Порядок визначення складових поля спрямованих хвиль - student2.ru (групова швидкість), яка дорівнюватиме довжині проекції вектора с на вісь OZ.

Розглянувши прямокутні трикутники, можемо записати:

Порядок визначення складових поля спрямованих хвиль - student2.ru Порядок визначення складових поля спрямованих хвиль - student2.ru (1.5.5)

Порівнявши вирази (1.5.1) і для Порядок визначення складових поля спрямованих хвиль - student2.ru (1.5.5) та (1.5.4) при Порядок визначення складових поля спрямованих хвиль - student2.ru і для Порядок визначення складових поля спрямованих хвиль - student2.ru (1.5.5):

Порядок визначення складових поля спрямованих хвиль - student2.ru Порядок визначення складових поля спрямованих хвиль - student2.ru

маємо право записати: Порядок визначення складових поля спрямованих хвиль - student2.ru .

Якщо довжина хвилі генератора Порядок визначення складових поля спрямованих хвиль - student2.ru буде більшою за Порядок визначення складових поля спрямованих хвиль - student2.ru , то відношення Порядок визначення складових поля спрямованих хвиль - student2.ru стане більшим, значить кут падіння Порядок визначення складових поля спрямованих хвиль - student2.ru має бути меншим від Порядок визначення складових поля спрямованих хвиль - student2.ru (хвиля падатиме крутіше). На рис.1.5.2 хвиля падає у точку Б. фазовий фронт Ф за одну секунду пройду шлях Порядок визначення складових поля спрямованих хвиль - student2.ru , і фазова швидкість хвилі зросте до значення VФ >VФ. Групова ж швидкість зменшиться до значення Vгр < Vгр.

Коли ж довжина хвилі генератора досягне значення Порядок визначення складових поля спрямованих хвиль - student2.ru , кут падіння на верхню площину хвилеводу дорівнюватиме нулю, тобто хвиля падатиме перпендикулярно до стінки у точку В. Фазовий фронт цієї хвилі буде паралельним осі OZ і їх перетин відбудеться на нескінченно великій відстані від точки О Порядок визначення складових поля спрямованих хвиль - student2.ru .

Групова швидкість дорівнюватиме нулю Порядок визначення складових поля спрямованих хвиль - student2.ru . Тобто хвиля буде відбиватися від стінок хвилеводу, рухаючись лише у поперечному напрямку без переміщення вздовж хвилеводу. Таким чином критичну довжину хвилі у хвилеводі можна визначити як таку, при якій припиняється поширення хвилі у хвилеводі. Умовою ж можливості поширення цієї хвилі є нерівність:

Порядок визначення складових поля спрямованих хвиль - student2.ru або Порядок визначення складових поля спрямованих хвиль - student2.ru (1.5.6)

Хвильовий опір хвилеводу

Для електромагнітних хвиль Е типу Порядок визначення складових поля спрямованих хвиль - student2.ru у спрямовуючий системі, наприклад, у двоплощинному хвилеводі, вирази (1.4.7)-(1.4.10) перепишуться так:

Порядок визначення складових поля спрямованих хвиль - student2.ru (1.6.1)

Порядок визначення складових поля спрямованих хвиль - student2.ru (1.6.2)

Порядок визначення складових поля спрямованих хвиль - student2.ru (1.6.3)

Порядок визначення складових поля спрямованих хвиль - student2.ru (1.6.4)

Введемо вектор Порядок визначення складових поля спрямованих хвиль - student2.ru тоді з урахуванням виразів (1.6.1) - (1.6.4) маємо:

Порядок визначення складових поля спрямованих хвиль - student2.ru (1.6.5)

Порядок визначення складових поля спрямованих хвиль - student2.ru (1.6.6)

Визначивши Порядок визначення складових поля спрямованих хвиль - student2.ru з виразу (1.6.5) і підставивши його у вираз (1.6.6), отримаємо:

Порядок визначення складових поля спрямованих хвиль - student2.ru , (1.6.7)

Тобто вектори Порядок визначення складових поля спрямованих хвиль - student2.ru і Порядок визначення складових поля спрямованих хвиль - student2.ru у хвиль типу Е є взаємно перпендикулярними. Тоді вираз (1.6.7) можна переписати у скалярному вигляді:

Порядок визначення складових поля спрямованих хвиль - student2.ru

або

Порядок визначення складових поля спрямованих хвиль - student2.ru ,

де Порядок визначення складових поля спрямованих хвиль - student2.ru - хвильовий опір вакууму, який заповнює хвилевід Порядок визначення складових поля спрямованих хвиль - student2.ru .

Відношення поперечної складової електричного поля Порядок визначення складових поля спрямованих хвиль - student2.ru до поперечної складової магнітного поля Порядок визначення складових поля спрямованих хвиль - student2.ru називається хвильовим опором хвилеводу Порядок визначення складових поля спрямованих хвиль - student2.ru . Отже, хвильовий опір хвилеводу з хвилею Е типу Порядок визначення складових поля спрямованих хвиль - student2.ru буде дорівнювати:

Порядок визначення складових поля спрямованих хвиль - student2.ru (1.6.8)

У випадку, коли хвилевід заповнений діелектриком з параметрами Порядок визначення складових поля спрямованих хвиль - student2.ru то

Порядок визначення складових поля спрямованих хвиль - student2.ru , (1.6.9)

де Порядок визначення складових поля спрямованих хвиль - student2.ru .

Для електромагнітних хвиль Н типу Порядок визначення складових поля спрямованих хвиль - student2.ru з рівнянь (1.6.7) – (1.6.9) матимемо:

Порядок визначення складових поля спрямованих хвиль - student2.ru (1.6.10)

Порядок визначення складових поля спрямованих хвиль - student2.ru (1.6.11)

Порядок визначення складових поля спрямованих хвиль - student2.ru (1.6.12)

Порядок визначення складових поля спрямованих хвиль - student2.ru (1.6.13)

Діючи аналогічно попередньому випадку (випадку для хвиль Е типу), з урахуванням виразів (1.6.10) - (1.6.13) матимемо:

Порядок визначення складових поля спрямованих хвиль - student2.ru , (1.6.14)

або Порядок визначення складових поля спрямованих хвиль - student2.ru , (1.6.15)

коли хвилевід заповнений діелектриком з хвильовим опором Порядок визначення складових поля спрямованих хвиль - student2.ru .

Прямокутний хвилевід

Прямокутний хвилевід, який є представником спрямовуючих систем, представляє собою металеву трубу прямокутного перетину. У такому хвилеводі можуть поширюватися хвилі

Порядок визначення складових поля спрямованих хвиль - student2.ru Порядок визначення складових поля спрямованих хвиль - student2.ru

Рисунок 1.7.1

Е та Н типів. Розмістимо хвилевід у декартові системі координат, як це показано на рис 1.7.1.

Хвилі електричного типу

Складові поля Е хвиль будемо визначати за порядком, викладеним у підрозділі 1.4. Запишемо рівняння Гельмгольця для спрямованих хвиль (1.3.5), яке у даному випадку буде таким:

Порядок визначення складових поля спрямованих хвиль - student2.ru (1.7.1)

Розв’яжемо це рівняння, розділивши змінні за методом Фур’є. Для цього його розв’язок представимо у вигляді добутку:

Порядок визначення складових поля спрямованих хвиль - student2.ru (1.7.2)

де Порядок визначення складових поля спрямованих хвиль - student2.ru - є функція лише координат Порядок визначення складових поля спрямованих хвиль - student2.ru - функція лише координат Порядок визначення складових поля спрямованих хвиль - student2.ru .

Підставивши (1.7.2) в (1.7.1) і розділивши отриманий результат на Порядок визначення складових поля спрямованих хвиль - student2.ru матимемо:

Порядок визначення складових поля спрямованих хвиль - student2.ru (1.7.3)

де х та у – незалежні змінні, що і дало право нам замінити частинні похідні на повні.

У лівій частині рівняння (1.7.3) маємо суму двох функцій, які є незалежними одна від одної. Сума цих функцій дорівнює сталій величині Порядок визначення складових поля спрямованих хвиль - student2.ru . Це можливо, коли кожна з них буде дорівнювати своїй сталій величині, тобто:

Порядок визначення складових поля спрямованих хвиль - student2.ru та Порядок визначення складових поля спрямованих хвиль - student2.ru (1.7.4)

де Порядок визначення складових поля спрямованих хвиль - student2.ru .

Перепишемо рівняння (1.7.4) у такому вигляді:

Порядок визначення складових поля спрямованих хвиль - student2.ru та Порядок визначення складових поля спрямованих хвиль - student2.ru (1.7.5)

Як відомо з курсу вищої математики, такі лінійні однорідні диференціальні рівняння другого порядку зі сталими коефіцієнтами мають загальні розв’язки виду:

Порядок визначення складових поля спрямованих хвиль - student2.ru (1.7.6)

Після підстановки (1.7.6) в (1.7.2) для повздовжньої складової Порядок визначення складових поля спрямованих хвиль - student2.ru хвилі матимемо:

Порядок визначення складових поля спрямованих хвиль - student2.ru (1.7.7)

Виходячи з граничних умов для Порядок визначення складових поля спрямованих хвиль - student2.ru на стінках хвилеводу (ця складова є тангенціальною до них) запишемо:

1) При Порядок визначення складових поля спрямованих хвиль - student2.ru (права стінка хвилеводу):

Порядок визначення складових поля спрямованих хвиль - student2.ru .

У цьому виразі один зі співмножників має дорівнювати нулю при будь – яких значеннях y та z. Це можливо лише коли Порядок визначення складових поля спрямованих хвиль - student2.ru а отже:

Порядок визначення складових поля спрямованих хвиль - student2.ru .

2) При Порядок визначення складових поля спрямованих хвиль - student2.ru (ліва стінка хвилеводу):

Порядок визначення складових поля спрямованих хвиль - student2.ru .

Що можливо при Порядок визначення складових поля спрямованих хвиль - student2.ru . Звідки Порядок визначення складових поля спрямованих хвиль - student2.ru і

Порядок визначення складових поля спрямованих хвиль - student2.ru , (1.7.8)

а отже Порядок визначення складових поля спрямованих хвиль - student2.ru .

3) При Порядок визначення складових поля спрямованих хвиль - student2.ru (нижня стінка хвилеводу):

Порядок визначення складових поля спрямованих хвиль - student2.ru ,

звідки Порядок визначення складових поля спрямованих хвиль - student2.ru і Порядок визначення складових поля спрямованих хвиль - student2.ru .

4) При Порядок визначення складових поля спрямованих хвиль - student2.ru (верхня стінка хвилеводу):

Порядок визначення складових поля спрямованих хвиль - student2.ru ,

звідки Порядок визначення складових поля спрямованих хвиль - student2.ru , Порядок визначення складових поля спрямованих хвиль - student2.ru і

Порядок визначення складових поля спрямованих хвиль - student2.ru , (1.7.9)

а отже Порядок визначення складових поля спрямованих хвиль - student2.ru .

Оскільки розмірність добутку довільних коефіцієнтів інтегрування, як бачимо з останнього виразу, збігається з розмірністю Порядок визначення складових поля спрямованих хвиль - student2.ru введемо позначення Порядок визначення складових поля спрямованих хвиль - student2.ru і тоді:

Порядок визначення складових поля спрямованих хвиль - student2.ru . (1.7.10)

Поперечні складові знайдемо, скориставшись формулами (1.6.1) – (1.6.4):

Порядок визначення складових поля спрямованих хвиль - student2.ru ,

Порядок визначення складових поля спрямованих хвиль - student2.ru ,

Порядок визначення складових поля спрямованих хвиль - student2.ru ,

Порядок визначення складових поля спрямованих хвиль - student2.ru .

Таким чином, вираз для комплексних амплітуд складових поля Е хвилі у прямокутному хвилеводі мають вигляд:

Порядок визначення складових поля спрямованих хвиль - student2.ru (1.7.11)

Як відомо з виразу (1.3.10) Порядок визначення складових поля спрямованих хвиль - student2.ru . Зваживши що , Порядок визначення складових поля спрямованих хвиль - student2.ru вираз для критичної довжини хвилі Е типу у прямокутному хвилеводі матиме вигляд:

Порядок визначення складових поля спрямованих хвиль - student2.ru . (1.7.12)

З виразів (1.7.11) випливає, що структура поля Е хвиль у площині поперечного перетину прямокутного хвилеводу відповідає структурі стійних хвиль. Число m дорівнює кількості напівхвиль, які розміщуються вздовж стінки а, n – числу напівхвиль, що розміщуються вздовж стінки в. Кожній парі чисел m і n відповідає певна структура електромагнітного поля, яке позначається через Порядок визначення складових поля спрямованих хвиль - student2.ru . Якщо, наприклад Порядок визначення складових поля спрямованих хвиль - student2.ru і Порядок визначення складових поля спрямованих хвиль - student2.ru то мова йде про поле типу Порядок визначення складових поля спрямованих хвиль - student2.ru .

Хвилі магнітного типу

Для такого типу хвиль необхідно повздовжну складову поля визначити, розв’язавши рівняння (1.3.6) після проектування його на вісь OZ:

Порядок визначення складових поля спрямованих хвиль - student2.ru (1.7.13)

Діючи аналогічно до попереднього випадку (знаходження Порядок визначення складових поля спрямованих хвиль - student2.ru ), знаходимо вираз для Порядок визначення складових поля спрямованих хвиль - student2.ru :

Порядок визначення складових поля спрямованих хвиль - student2.ru (1.7.14)

Для знаходження коефіцієнтів інтегрування Порядок визначення складових поля спрямованих хвиль - student2.ru скористуємось виразами (1.4.7) та (1.4.9) для магнітних хвиль Порядок визначення складових поля спрямованих хвиль - student2.ru і запишемо пропорції:

Порядок визначення складових поля спрямованих хвиль - student2.ru та Порядок визначення складових поля спрямованих хвиль - student2.ru .

1) При Порядок визначення складових поля спрямованих хвиль - student2.ru (нижня стінка хвилеводу):

Порядок визначення складових поля спрямованих хвиль - student2.ru

2) При Порядок визначення складових поля спрямованих хвиль - student2.ru (верхня частина хвилеводу):

Порядок визначення складових поля спрямованих хвиль - student2.ru

Порядок визначення складових поля спрямованих хвиль - student2.ru .

3) При Порядок визначення складових поля спрямованих хвиль - student2.ru (права стінка хвилеводу):

Порядок визначення складових поля спрямованих хвиль - student2.ru

4) При Порядок визначення складових поля спрямованих хвиль - student2.ru (ліва стінка хвилеводу):

Порядок визначення складових поля спрямованих хвиль - student2.ru

Як бачимо, вирази для поперечних чисел Порядок визначення складових поля спрямованих хвиль - student2.ru та Порядок визначення складових поля спрямованих хвиль - student2.ru збігаються з попереднім випадком, а отже, критична довжина хвилі у випадку магнітних хвиль має визначитися також за формулою (1.7.12). Зміст індексів m і n теж є тим самим що і у випадку хвиль Еmn, наприклад, у випадку хвилі Порядок визначення складових поля спрямованих хвиль - student2.ru , вздовж розмірів a і в розміщується по одній півхвилі.

Вираз для повздовжньої складової Порядок визначення складових поля спрямованих хвиль - student2.ru буде таким:

Порядок визначення складових поля спрямованих хвиль - student2.ru .

Аналогічно до попереднього випадку електричної хвилі, поперечні складові знайдемо, підставивши у вирази (1.4.7) - (1.4.10) Порядок визначення складових поля спрямованих хвиль - student2.ru та Порядок визначення складових поля спрямованих хвиль - student2.ru з (1.7.15):

Порядок визначення складових поля спрямованих хвиль - student2.ru (1.7.16)

Наши рекомендации