Федеральное агентство по образованию. Государственное образовательное учреждение высшего профессионального образования

Государственное образовательное учреждение высшего профессионального образования

«ПЕРМСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет информатики и экономики

Кафедра прикладной информатики

КУРСОВАЯ РАБОТА

по дисциплине

Интеллектуальные информационные системы

на тему:

Оценка стоимости квартир

ИСПОЛНИТЕЛЬ: студентка гр. 1233

Теплова К. Ю.

НАУЧНЫЙ РУКОВОДИТЕЛЬ:

Ясницкий Л. Н.

 
Пермь 2008

Содержание

Введение 3

Глава 1. Теоретические основы нейросетевых технологий 4

1.1. История развития нейронных сетей 4

1.2. Искусственные нейронные сети 5

1.3. Проектирование нейронных сетей 8

1.4. Обучение нейронных сетей 9

1.5. Подготовка входных и выходных параметров 9

1.5.1. Побор обучающих примеров 9

1.5.2. Предобработка обучающих примеров 10

1.6. Возможности нейросетей 11

1.6.1. Преимущества нейросетей 11

1.6.2. Задачи, решаемые с помощью нейросетей 12

1.6.3. Прикладные возможности нейронных сетей 13

Глава 2. Применение персептрона в оценке стоимости квартир 15

2.1. Проектирование модели 15

2.2. Исследование модели 17

Заключение 21

Библиографический список 22

Приложение 23

Введение

Искусственные нейронные сети прочно вошли в нашу жизнь и в настоящее время широко используются при решении самых разных задач и активно применяются там, где обычные алгоритмические решения оказываются неэффективными или вовсе невозможными. Нейронные сети – исключительно мощный метод моделирования, позволяющий воспроизводить чрезвычайно сложные зависимости.

Нейронная сеть – это система, выполненная по образу и подобию человеческого мозга.

Главным отличием нейросетей от других методов, например таких, как экспертные системы, является то, что нейросети не нуждаются в заранее известной модели, а строят ее сами только на основе предъявляемой информации. Именно поэтому нейронные сети вошли в практику всюду, где нужно решать задачи прогнозирования, классификации, управления – иными словами, в области человеческой деятельности, где есть неформализуемые или трудно формализуемые задачи.

Оценка недвижимости является одной из наиболее востребованных и, вместе с тем, одной из наиболее сложных задач на рынке систем оценки и принятия решений. Сложность заключается, во-первых, в большом количестве факторов, влияющих на оценку. Во-вторых, сам характер факторов представляет существенную проблему – некоторые из них довольно сложно формализовать, например, «состояние объекта». В-третьих, рынок недвижимости достаточно динамичен, что подразумевает высокую скорость изменения значений параметров оценки с течением времени.

Нейронные сети могут быть альтернативой обычных методов, применяемых к оценке недвижимости, таких, как метод множественной регрессии и методы теории оценки недвижимости (доходный, затратный и сравнительный). Так как точность результатов полученных с помощью нейросетевых технологий может соперничать или даже превышать точность результатов, полученных при помощи традиционных методов оценки. Но в настоящее время нет окончательного вывода о том, какой метод лучше всего использовать. Одни источники говорят, что точность результатов, полученных с помощью нейросетевых технологий выше, чем точность результатов множественной регрессии, другие источники утверждают, что нейронные сети показывают более точные результаты, только при небольших объемах данных.

Нейросети могут применяться как в самом процессе оценки, так и на этапе выбора тех факторов, которые оказывают наибольшее влияние на формирование цены на недвижимость.

Целью данной работы является оценка стоимости квартир в Перми с использованием нейронных сетей. Для достижения данной цели были поставлены следующие задачи: изучение теоретических основ нейронного подхода, проектирование нейросети, обучение нейросети, подготовка входных и выходных параметров, определение факторов, влияющих на стоимость квартиры, построение модели для оценки недвижимости, исследование полученной модели.

Глава 1. Теоретические основы нейросетевых технологий

1.1. История развития нейронных сетей

Считается, что теория нейронных сетей, как научное направление, впервые была обозначена в классической работе МакКаллока и Питтса 1943 г., в которой утверждалось, что, в принципе, любую арифметическую или логическую функцию можно реализовать с помощью простой нейронной сети.

В 50-х годах прошлого века группа исследователей объединила биологические и физиологические подходы и создала первые искусственные нейронные сети. Тогда казалось, что ключ к искусственному интеллекту найден. Но, хотя эти сети эффективно решали некоторые задачи из области искусственного зрения — предсказания погоды и анализа данных, иллюзии вскоре рассеялись. Сети были не в состоянии решать другие задачи, внешне похожие на те, с которыми они успешно справлялись. С этого времени начался период интенсивного анализа. Были построены теории, доказан ряд теорем. Но уже тогда стало понятно, что без привлечения серьезной математики рассчитывать на значительные успехи не следует.

В 1958 г. Фрэнк Розенблатт придумал нейронную сеть, названную персептроном, и построил первый нейрокомпьютер Марк-1. Персептрон был предназначен для классификации объектов. На этапе обучения “учитель” сообщает персептрону к какому классу принадлежит предъявленный объект. Обученный персептрон способен классифицировать объекты, в том числе не использовавшиеся при обучении, делая при этом очень мало ошибок. Примерно в это же время вышла работа Минского и Пейперта, указавшая ограниченные возможности простейшего персептрона. Результаты Минского и Пейперта погасили энтузиазм большинства исследователей, особенно тех, кто работал в области вычислительных наук.

С 70-х годов в научных журналах стали появляться публикации, касающиеся искусственных нейронных сетей. Постепенно был сформирован хороший теоретический фундамент, на основе которого сегодня создается большинство сетей. В последние два десятилетия разработанная теория стала активно применяться для решения прикладных задач. Появились и фирмы, занимающиеся разработкой прикладного программного обеспечения для конструирования искусственных нейронных сетей. К тому же 90-е годы ознаменовались приходом искусственных нейронных сетей в бизнес, где они показали свою реальную эффективность при решении многих задач — от предсказания спроса на продукцию до анализа платежеспособности клиентов банка.

С начала 80-х годов ИНС вновь привлекли интерес исследователей, что связано с энергетическим подходом Хопфилда и алгоритмом обратного распространения для обучения многослойного персептрона (многослойные сети прямого распространения), впервые предложенного Вербосом. При этом важную роль сыграли работы группы PDP (Parallel Distributed Processing). В них рассматривались нейронные сети, названные многослойными персептронами, которые оказались весьма эффективными для решения задач распознавания, управления и предсказания. (Многослойные персептроны занимают ведущее положение, как по разнообразию возможностей использования, так и по количеству успешно решенных прикладных задач.)

Сегодня существует большое число различных конфигураций нейронных сетей с различными принципами функционирования, которые ориентированы на решение самых разных задач. В качестве примера рассмотрим многослойную полносвязанную нейронную сеть прямого распространения (рис. 1), которая широко используется для поиска закономерностей и классификации образов. Полносвязанной нейронной сетью называется многослойная структура, в которой каждый нейрон произвольного слоя связан со всеми нейронами предыдущего слоя, а в случае первого слоя — со всеми входами нейронной сети. Прямое распространение сигнала означает, что такая нейронная сеть не содержит петель.

Наши рекомендации