Ысокоскоростная технология Gigabit Ethernet

ехнология Fast Ethernet

У технологии Fast Ethernet формат кадра остался прежним при этом, однако, длина битового интервала уменьшилась в десять раз и стала равной bt= 0,01 мкс. В результате все временные параметры, определённые для технологии Ethernet, уменьшились в десять раз, а пропускная способность соответственно увеличилась также в десять раз и стала равной 100 Мбит/ с. Учитывая, что на пропускную способность сети влияют длины физических линий связи, то отличия FastEthernet от Ethernet сосредоточены в основном на физическом уровне. Для обеспечения требуемой пропускной способности рекомендуется в основном использовать неэкранированную витую пару и волоконно- оптический кабель.

При создании сегментов FastEthernet максимальный диаметр сети колеблется от 136 до 205 меҭҏᴏв, а количество концентраторов в сегменте ограничено одним или двумя, исходя из типа концентратора. При использовании двух концентраторов расстояние между ними не может превышать 5 - 10 меҭҏᴏв.

Наличие многих общих черт у технологий Fast Ethernet и Ethernet дает простую общую рекомендацию использования новой технологии: Fast Ethernet следует применять в тех организациях и в тех частях сетей, где до этого широко применялся 10 Мегабитный Ethernet, но сегодняшние условия или же ближайшие перспективы требуют в этих частях сетей более высокой пропускной способности. При этом сохраняется весь опыт обслуживающего персонала, привыкшего к особенностям и типичным неисправностям сетей Ethernet.

Основная область использования Fast Ethernet - это настольные компьютеры, сети рабочих групп и отделов, где компьютерам требуется пропускная способность выше 10 Мбит/c. Такими компьютерами чаще всего являются файловые серверы, но и современные клиентские компьютеры требуют такую же скорость.

ысокоскоростная технология Gigabit Ethernet

Основная идея разработчиков стандарта GigabitEthernet состоит в максимальном сохранении идей классической технологии Ethernet при достижении битовой скорости в 1000 Мб/с. В 1999 году спецификация Gigabit Ethernet была принята комитетом IEEE.

В связи с ограничениями, накладываемыми методом CSMA/CD на длину кабеля, версия Gigabit Ethernet для разделяемой среды допускала бы длину сегмента всего в 25 меҭҏᴏв. Так как существует большое количество применений, когда нужно повысить диаметр сегмента хотя бы до 100 меҭҏᴏв, то в данный момент разработчиками предпринимаются усилия по увеличению длины сегмента с одновременным сохранением высокой скорости передачи. Все усилия в основном сосредоточены на разработке высококачественных линий связи.

В общем случае рассмотренные выше технологии Ethernet позволяют организовать сеть с иерархией скоростей: персональные компьютеры подключаются к коммутаторам сегментов со скоростью 10 Мбит/с, эти коммутаторы связываются с центральными коммутаторами по технологии Fast Ethernet, а те в свою очередь связываются между собой по Gigabit Ethernet.

Технология 100VG-AnyLAN

В качестве альтернативы технологии Fast Ethernet фирмы AT&T и HP выдвинули проект новой недорогой технологии со скоростью передачи данных 100 Мб/с - 100Base-VG (VoiceGrade - технология, способная работать на кабеле, предназначенном первоначально для передаче голоса).

В 1995 года технология 100VG-AnyLAN получила статус стандарта IEEE. В технологии 100VG-AnyLAN определён новый метод доступа Demand Priority с двумя уровнями приоритетов - для обычных приложений и для мультимедийных

Метод доступа Demand Priority основан на передаче концентратору функций арбитра, решающего проблему доступа к разделяемой среде. Концентратор отличается от обычных повторителей за счет того, что он опрашивает адреса присоединенных к нему узлов и а второму не передаёт принятый от узла кадр на все порты, а только на тот, на который нужно (Рис. 1). Концентратор узнает порт станции назначения с помощью специальной таблице адресов, которая создается во время подключения концентратора. Среда по-прежнему разделяемая, так как концентратор за один цикл опроса портов принимает в свой буфер только один кадр, не запоминая все предыдущие. Некоторые этапы работы с приема и передачи кадров совмещаются во времени, и за счет этого ускоряется передача кадров. Метод Demand Priority повышает коэффициент использования пропускной способности сети - до 95% по утверждению компании Hewlett-Packard.

Отсутствие требования распознавания коллизий позволяет без проблем сҭҏᴏить протяженные сегменты сети без коммутаторов, только на концентраторах - до 2-х киломеҭҏᴏв между узлами на оптоволокне и до 100 меҭҏᴏв на витой паҏе.

Общий диаметр сети, посҭҏᴏенной на концентраторах, может составлять при использовании оптоволокна до 5000 м.

Технология 100VG-AnyLAN имеет меньшую популярность среди производителей коммуникационного оборудования, чем конкурирующее предложение - технология Fast Ethernet. Компании, которые не поддерживают технологию 100VG-AnyLAN, объясняют это тем, что для большинства сегодняшних приложений и сетей достаточно возможностей технологии Fast Ethernet, которая не так заметно отличается от привычной большинству пользователей технологии Ethernet.

ехнология Token Ring

Сети Token Ring представляют собой отрезки кабелей, соединяющие все компьютеры в кольцо. Кольцо рассматривается как общий разделяемый ресурс и для доступа к нему требуется не случайный алгоритм, как в сетях Ethernet, а детерминированный, основанный на передаче компьютерам права на использование кольца в определённом порядке. Это право передаётся с помощью кадра специального формата, называемого маркером или токеном. Технология Token Ring была разработана компанией IBM в 1984 год. Сети Token Ring работают на скоростях 4 Мбит/с и 16 Мбит/с и смешение разных скоростей в одном кольце не допускается.

Технология Token Ring является более сложной технологией чем Ethernet.

Для обеспечения доступа к физической среде по кольцу циркулирует кадр специального формата и назначения - маркер. Для скорости 4 Мбит/с максимальный размер кадра составляет 5000 байт, а для 16 Мбит/с - 20 000 байт. В качестве физической среды используется экранированная витая пара, неэкранированная витая пара, а также оптоволоконный кабель. Максимальное количество компьютеров в сети равно 260, а максимальная длина кабеля - 4 км. Максимальное расстояние между станциями 100 м.

Недавно компания IBM предложила новый вариант технологии Token Ring, названный High- Speed Token Ring. Эта технология поддерживает битовые скорости 100 и 155 Мбит/с, сохраняя особенности технологии Token Ring 16 Мбит/с.

ехнология FDDI

Технология FDDI (Fiber Distributed Data Interface) - оптоволоконный стандарт распределённых данных - это первая технология локальных сетей, в которой средой передачи данных является волоконно- оптический кабель.

Стандарт FDDI был выпущен ANSI (American National Standards Institute) в 1984 году. В этот период бысҭҏᴏдействующие рабочие места пользователей начинали требовать максимального напряжения возможностей существующих локальных сетей (в основном это были Ethernet и Token Ring). Возникла необходимость в новой технологии, которая могла бы легко поддерживать эти рабочие места и их новые прикладные задачи.

Хотя FDDI работает на более высоких скоростях, она во многом похожа на технологию Token Ring, т.к. использует такую же технику доступа к носителю информации (передача маркера).

В отличие от Token Ring технология FDDI сҭҏᴏится на основе двух оптоволоконных кольцах, которые образуют главный и резервной путь передачи данных между компьютерами сети. Наличие двух колец - это главный путь повышения отказоустойчивости FDDI. В случае обрыва первичное кольцо объединяется со вторым, т.е. происходит реконфигурации кольца (Рис 3).

Технология FDDI позволяет обеспечить: максимальное количество подключенных компьютеров - 500, максимальный диаметр двойного кольца - 100 км, максимальные расстояния между компьютерами - 2 км.

На базе рассмотренных технологи и усҭҏᴏйств канального и физического уровня модели OSI можно посҭҏᴏить различные локальные сети. На рис →4. показан пример распределённой магистрали, которая посҭҏᴏена на основе двойного кольца FDDI для здания, к которому подключены коммутаторы этажей. Скорость распределённой магистрали существенно ниже скорости на внутренней магистрали коммутатора.

Вопрос №8

Сетевые технологии на примере Ethernet, основные принципы

Ethernet - это самый распространенный на сегодняшний день стандарт локальных сетей, реализуемый на канальном уровне модели OSI. Общее количество работающих по протоколу Ethernet сетей оценивается в 5 миллионов, а количество компьютеров с установленными адаптерами Ethernet - более чем в 50 миллионов. Ethernet - это сетевой стандарт, разработанный фирмой Xerox в 1975 году и принятый комитетом IEEE (Institute of Electrical and Electronics Engineers).

Указанный стандарт использует метод разделения среды - метод CSMA/ CD (carrier- sense - multiply- acces with collision detection)- метод коллективного доступа с опознаванием несущей и обнаружением коллизий. Этот метод используется исключительно в сетях с топологией “общая шина”. Все компьютеры в такой топологии имеют доступ к общей шине, все компьютеры имеют возможность немедленно получить данные, которые любой из компьютеров начал передавать на общую шину. Простота подключения предопределяет успех технологии Ethernet. Базовый стандарт Ethernet предписывает передачу двоичной информации для всех вариантов физической среды со скоростью 10 Мбит/с.

Принцип работы Ethernet следующий.

Чтобы получить возможность передавать кадр компьютер должен убедиться, канал связи (среда) свободен. Это достигается прослушиванием главный гармоники сигнала, которая также называется несущей частотой (carrier- sense, CS). Признаком незанятости канала является отсутствие на ней несущей частоты (5 - 10 МГц). Если среда свободна, то компьютер начинает передавать кадр. Если в это время другой компьютер пробует начать передачу, но обнаруживает, что канал занят, он вынужден ждать, пока первый компьютер не прекратить передачу кадра.

Вопрос №9

Основное назначение протокола TCP/IP. Формат протокола TCP/IP

TCP/IP - это аббревиатура термина Transmission Control Protocol/Internet Protocol (Протокол управления передачей/Протокол Internet). В терминологии вычислительных сетей протокол - это заранее согласованный стандарт, который позволяет двум компьютерам обмениваться данными.

Причина, по которой TCP/IP столь важен сегодня, заключается в том, что он позволяет самостоятельным сетям подключаться к Internet или объединяться для создания частных интрасетей. Вычислительные сети, составляющие интрасеть, физически подключаются через устройства, называемые маршрутизаторами или IP-маршрутизаторами.

TCP/IP дает решение проблемы данными между двумя компьютерами, подключенными к одной и той же интрасети, но принадлежащими различным физическим сетям. Решение состоит из нескольких частей, причем каждый член семейства протоколов TCP/IP вносит свою лепту в общее дело.

Краткое описание протоколов семейства TCP/IP с расшифровкой аббревиатур

ARP (Address Resolution Protocol, протокол определения адресов): конвертирует 32-разрядные IP-адреса в физические адреса вычислительной сети, например, в 48-разрядные адреса Ethernet.

FTP (File Transfer Protocol, протокол передачи файлов):позволяет передавать файлы с одного компьютера на другой с использованием TCP-соединений. В родственном ему, но менее распространенном протоколе передачи файлов - Trivial File Transfer Protocol (TFTP) - для пересылки файлов применяется UDP, а не TCP.

ICMP (Internet Control Message Protocol, протокол управляющих сообщений Internet):позволяет IP-маршрутизаторам посылать сообщения об ошибках и управляющую информацию другим IP-маршрутизаторам и главным компьютерам сети. ICMP-сообщения "путешествуют" в виде полей данных IP-дейтаграмм и обязательно должны реализовываться во всех вариантах IP.

IGMP (Internet Group Management Protocol, протокол управления группами Internet):позволяет IP-дейтаграммам распространяться в циркулярном режиме (multicast) среди компьютеров, которые принадлежат к соответствующим группам.

IP (Internet Protocol, протокол Internet):низкоуровневый протокол, который направляет пакеты данных по отдельным сетям, связанным вместе с помощью маршрутизаторов для формирования Internet или интрасети. Данные "путешествуют" в форме пакетов, называемых IP-дейтаграммами.

RARP (Reverse Address Resolution Protocol, протокол обратного преобразования адресов):преобразует физические сетевые адреса в IP-адреса.

SMTP (Simple Mail Transfer Protocol, простой протокол обмена электронной почтой):определяет формат сообщений, которые SMTP-клиент, работающий на одном компьютере, может использовать для пересылки электронной почты на SMTP-сервер, запущенный на другом компьютере.

TCP (Transmission Control Protocol, протокол управления передачей):протокол ориентирован на работу с подключениями и передает данные в виде потоков байтов. Данные пересылаются пакетами - TCP-сегментами, - которые состоят из заголовков TCP и данных. TCP - "надежный" протокол, потому что в нем используются контрольные суммы для проверки целостности данных и отправка подтверждений, чтобы гарантировать, что переданные данные приняты без искажений.

UDP (User Datagram Protocol, протокол пользовательских дейтаграмм):протокол, не зависящий от подключений, который передает данные пакетами, называемыми UDP-дейтаграммами. UDP - "ненадежный" протокол, поскольку отправитель не получает информацию, показывающую, была ли в действительности принята дейтаграмма.

Вопрос №10

Протоколы маршрутизации

Протокол маршрутизации — сетевой протокол, используемый маршрутизаторами для определения возможных маршрутов следования данных в составной компьютерной сети. Применение протокола маршрутизации позволяет избежать ручного ввода всех допустимых маршрутов, что, в свою очередь, снижает количество ошибок, обеспечивает согласованность действий всех маршрутизаторов в сети и облегчает труд администраторов.

Протоколы маршрутизации делятся на два вида, зависящие от типов алгоритмов, на которых они основаны:

· Дистанционно-векторные протоколы, основаны на Distance Vector Algorithm (DVA);

· Протоколы состояния каналов связи, основаны на Link State Algorithm (LSA).

Так же протоколы маршрутизации делятся на два вида в зависимости от сферы применения:

· Междоменной маршрутизации;

· Внутридоменной маршрутизации.

Вопрос №12

Архитектура «клиент – сервер»

Клиент-сервер (англ. Client-server) — вычислительная или сетевая архитектура, в которой задания или сетевая нагрузка распределены между поставщиками услуг, называемыми серверами, и заказчиками услуг, называемыми клиентами. Физически клиент и сервер это программное обеспечение. Обычно они взаимодействуют через компьютерную сеть посредством сетевых протоколов и находятся на разных вычислительных машинах, но могут выполняться также и на одной машине. Программы расположенные на сервере ожидают от клиентских программ запросы и предоставляют им свои ресурсы в виде данных(например загрузка файлов посредством HTTP, FTP, BitTorrent или потоковое мультимедиа) или сервисных функций(например работа с электронной почтой, общение посредством cистем мгновенного обмена сообщениями, просмотр web-страниц во всемирной паутине).

Основные преимущества

· Отсутствие дублирования кода программы-сервера программами-клиентами.

· Так как все вычисления выполняются на сервере, то требования к компьютерам, на которых установлен клиент, снижаются.Все данные хранятся на сервере, который, как правило, защищён гораздо лучше большинства клиентов.

· На сервере проще обеспечить контроль полномочий, чтобы разрешать доступ к данным только клиентам с соответствующими правами доступа.

Основные недостатки

· Неработоспособность сервера может сделать неработоспособной всю вычислительную сеть. Неработоспособным сервером следует считать сервер, производительности которого не хватает на обслуживание всех клиентов, а также сервер, находящийся на ремонте, профилактике и т. п.

· Поддержка работы данной системы требует отдельного специалиста — системного администратора.

· Высокая стоимость оборудования.

Наши рекомендации