Оборудование для обработки экспонированных материалов: проявочные и сушильные машины.
Наиболее распространенной является такая схема технологического процесса: проявка — фиксирование — промывка — сушка (рис. 1).
Рис. 1. Схема проявочного аппарата типа РПП-50А:
1 — загрузка фотоматериала; 2 — мокрая обработка; 3 — сушка; 4 — выгрузка сухой плёнки
В состав проявочной машины входят системы транспортирования фотоматериалов, циркуляции и термостатирования рабочих растворов, корректирования рабочих свойств растворов, а также сушильное и электрическое оборудование.
Система транспортирования фотоматериала. Она осуществляет его перемещение во время обработки пленки. Основные требования к системе — обеспечение надежного перемещения пленки на всех стадиях ее обработки. Устройства транспортирования не должны заминать пленку или деформировать ее светочувствительный слой, они должны быть стойкими к действию рабочих растворов.
Различают устройства транспортирования с периодическим перемещением пленки и непрерывным. В первых, пленка непосредственно не затрагивает механизм транспортирования, в них можно обрабатывать фотоматериалы на тонких подложках и с малой прочностью эмульсионного слоя. Тем не менее, эти устройства довольно сложные и ненадежные в работе. Второй тип построения транспортирования обеспечивает более высокую производительность и качество обработки пленки, он более надежный, простой и удобный при обслуживании, имеет меньшую металлоемкость.
Непрерывное перемещение пленки обеспечивается спаренными или строенными валиками или пластмассовыми лентами, между которыми двигается пленка (рис. 2.35). Во время перемещения может быть исключено проскальзывание пленки, поэтому все валики связаны друг с другом с помощью шестерен. Скорость транспортирования пленки может быть стабильной.
Валиковые устройства транспортирования пленки (рис. 2., а, б) состоят из отдельных пар валиков 1, между которыми протягивается фотопленка 2. Надежное ее перемещение гарантируется при толщине основы 0,1...0,25 мм. Транспортировочные валики подпружинены. После обработки пленки в ванне она захватывается передающими валиками 3, которые выводят ее из ванны и передают с помощью направляющей 4 в следующую секцию обработки 5.
В устройствах транспортирования ленточного типа (рис. 2. в) пленка перемещается перфорированными лентами, которыми она прижимается к вращающимся валикам. Пленка касается валиков эмульсионным боком. Ленточный конвейер надежно защищает пленку (в особенности тонкую) от скручивания, образования складок или перекосов во время движения.
Система циркуляции и термостатирования рабочих растворов.
Она обеспечивает непрерывное интенсивное перемешивание и фильтрацию растворов и стабильную поддержку их температуры во всем объеме бака.
На рис. 3 показана упрощенная схема замкнутого контура циркуляции раствора. Принцип действия системы состоит в том, что раствор откачивается из бака 1 центробежным насосом 2 и через фильтр 3 подается в теплообменник 4, из которого потом по трубе 8 направляется снова в бак машины. Такой замкнутый цикл циркуляции растворов осуществляется в большинства современных проявочных машин.
Рис. 3. Упрощенная схема замкнутого контура циркуляции раствора фотоматериал пленка фотоформа проявочный
Система термостатирования рабочих растворов обеспечивает непрерывный контроль температуры и поддержание ее с необходимой точностью. Система включает элементы для нагрева и охлаждения раствора, блок контроля температуры 6 (см. рис. 3) с термодатчиком 7 и исполнительные элементы 5 (пусковое реле и электромагнитные вентили).
В полиграфических проявочных машинах электронагреватели и змеевики охлаждения располагаются, как правило, непосредственно в баках проявителя и фиксажа.
В большинстве проявочных машинах в качестве теплоносителя используется обратная (оборотная) вода. В этом случае электронагреватели и змеевики охлаждения располагаются в отдельной ванной с водой. Теплообменная вода циркулирует по замкнутому контуру и передает теплоту рабочим растворам через стенки двойного дна или через теплообменник, построенный по схеме «труба в трубе». При этом в одной из них течет вода, а в другой — рабочий раствор. Датчик терморегулятора может находиться в баке с раствором или в теплообменнике.
Системы корректирования рабочих свойств растворов.
Эти системы бывают трех типов: полуавтоматические, автоматические и с подачей примесей вручную. Нужная доза вручную отмеривается мензуркой или определяется временем работы дозирующего устройства. Качество корректирования при этом зависит от квалификации оператора.
В полуавтоматических системах оператор определяет количество примесей с помощью таблиц, построенных на основе известных соотношений между количеством пленки и количеством процентов проэкспонированных плоскостей со степенью потерь рабочих свойств обрабатываемых растворов. Этот более объективный метод, но качество коррекции также зависит от квалификации оператора.
В автоматических системах используются специальные датчики для определения степени почернения обработанной пленки. Информация о формате и степени почернения пленки, которая поступает из датчиков, подается в систему управления, которая определяет дозу и время введения закрепляющих примесей.
Применяются электронные, магнитные и электроннооптические датчики. Первые два вида датчиков определяют только площадь обработанной пленки и потому не обеспечивают высокого качества коррекции растворов. Электроннооптические датчики учитывают дополнительно степень почернения пленки и обеспечивают высокую стабильность рабочих свойств растворов. На рис. 4 показано фотоэлектрическое оборудование для контроля проявления фотопленки 3, которая проходит под рейкой с датчиками (светодиодами) 2, которые просвечивают пленку инфракрасным излучением. Рейка с фотоприемниками (фотодиодами) 4 расположена под пленкой и воспринимает это излучение 1. Сила электрического сигнала в любом фотодиоде пропорциональна почернению пленки в зоне действия соответствующего датчика, то есть количеству проявленного серебра. Электрические сигналы фотодиодов поступают в электронное вычислительное оборудование, которое по этим сигналам вычисляет объем примеси фиксажа и частоту введения примесей в проявитель.
Внесение примесей в рабочий раствор приводит к изменению его температуры. Наибольшее ее отклонение будет при одновременной подаче примесей в раствор проявителя, поскольку дозирующие насосы, которые подают корректирующую и противоокислюющую примеси, работают независимо друг от друга.
Изменение температуры рабочего раствора при внесении примесей не должно превышать заданную точность поддержки его температуры.
Сушильное оборудование. В полиграфических проявочных машинах оно может обеспечивать высокую интенсивность процесса с одновременным обеспечением «мягкого» режима сушки. Этим требованиям наиболее соответствует конвективний способ сушки, по которому она осуществляется благодаря процессам тепло - и массообмена влажного материала и воздуха. Интенсивность процесса зависит от температуры воздуха, относительной его влажности и скорости движения.
Сушильное оборудование состоит из камеры сушки, калорифера с электронагревателями подогрева воздуха и вентилятора для подачи воздуха в камеру сушки. Воздух подается на пленку через специальные сопла или через трубки с отверстиями, в некоторых устройствах он нагнетается с помощью лопастных вентиляторов. Воздух подогревается электронагревателями, размещенными непосредственно в камере сушки, в которую оно поступает через фильтры. Скорость подачи воздуха на поверхность фотоматериала регулируется с помощью заслонок или шиберов.
Системы автоматики и блокировки. В проявочных машинах предусмотрены автоматические устройства контроля и поддержки температуры рабочих растворов и воздуха в секции сушки, стабилизации скорости перемещения фотоматериала и оборудование для корректирования рабочих свойств обрабатывающих растворов.
Системы блокирования выключают привод машины при выходе из строя транспортировочного оборудования или задержки в нем фотоматериала и предотвращают включению электронагревателей в секции мокрой обработки при отключенных циркуляционных насосах, а также включению калорифера без включения вентилятора и выключения систем циркуляции в случае отсутствия растворов в баках машины.
2. Фотонаборные автоматы: схемы построения, основные характеристики, области применения.
Для получения скрытого фотографического изображения текста и растрированных иллюстраций в допечатных процессах применяются фотонаборные автоматы (ФНА). В современных фотонаборных автоматах для формирования изображения используется принцип сканирования световым лучом, сфокусированным на плоскости фотоматериала в пятно малого размера.
Принцип сканирования заключается в том, что световое пятно, последовательно перемещаясь по расположенным с определенным шагом вертикальным или горизонтальным линиям, постепенно обходит всю площадь поверхности фотоматериала, на которой должно быть записано изображение. При этом в результате модулирования интенсивности светового сигнала по принципу «да-нет» осуществляется экспонирование фотоматериала и тем самым запись скрытого фотографического изображения черно-белых отрезков и точек. Из этих элементов постепенно и формируется полное изображение шрифтовых знаков, штриховых и растрированных полутоновых иллюстраций, других графических элементов.
В качестве источника света в настоящее время в фотонабор- нъга. автоматах, используется лазер. Основными достоинствами лазерного источника света, которые играют определяющую роль в применении его для записи изображения в ФНА, являются: монохроматичность излучения, малая расходимость и высокая интенсивность лазерного луча, возможность быстрого и достаточно простого управления лучом.
В фотонаборных автоматах используются газовые и полупроводниковые лазеры - лазерные диоды. В качестве газовых лазеров применяются аргон-ионные (Аг) и гелий-неоновые (He-Ne), которые имеют достаточно короткую длину волны - 488 и 633 нм соответственно. Из полупроводниковых лазеров в современных фотонаборных автоматах применяются лазерные диоды инфракрасного и видимого красного излучения (длина волны соответственно 780 и 670-680 нм). Чем меньше длина волны, тем более четкое пятно (точку) на фотоматериале можно получить при записи. Такие точки изображения, у которых оптическая плотность на краях очень резко изменяется от максимального значения до минимального, называют жесткими, а точки с более плавным изменением оптической плотности на краях - мягкими. При записи изображения с невысокими линиатурами растра (133, 150 lpi) влияние «жесткости» точки практически неуловимо, а с учетом погрешностей собственно печатного процесса и вовсе исчезает.
При высоких же линиатурах печати жесткость луча начинает играть более принципиальную роль, так как для достижения таких линиатур требуется адекватное уменьшение диаметра сканирующего лазерного пятна.
Последние модели ФНА, за редким исключением, используют в качестве источника лазерный диод, работающий в спектре видимого красного света (670-680 нм).
Существуют и выпускаются модели ФНА, в которых установлен лазерный диод, работающий в инфракрасном спектре света 780 нм.
Основным признаком, по которому фотонаборные автоматы относят к тому или иному типу, является схема построения, которая определяет характер размещения и транспортирования фотоматериала и способ развертки изображения. В настоящее время лазерные фотонаборные автоматы имеют три принципиально разные схемы построения:
Капстан. Плёнка движется в одной плоскости, поступательно, лазерный луч перемещается в перпендикулярной плёнке плоскости с помощью многогранной призмы.
С внешним барабаном. Плёнка закрепляется на внешней поверхности барабана, который вращается. Экспонирование осуществляется матрицей лазерных диодов, которая движется параллельно оси барабана.
С внутренним барабаном. Плёнка закрепляется на внутренней поверхности барабана. Лазерный луч идёт по оси барабана и направляется на плёнку вращающимся зеркалом.
Принципиальная схема фотонаборного автомата капстанового типа
Принципиальная схема фотонаборного автомата с внутренним барабаном
Принципиальная схема фотонаборного автомата с внешним барабаном
Основными техническими характеристиками фотонаборных автоматов являются формат записи, разрешение и размер пятна, линиатура растра, повторяемость, скорость записи.
Формат. Различают максимальный формат и формат экспонирования. Этот параметр ФНА должен соответствовать формату используемой печатной машины или перекрывать его. В ином случае придется применять ручной монтаж пленки, что для цветной печати приведет к снижению ее качества.
Разрешение и размер точки. Под разрешением (разрешающей способностью) понимается количество точек, воспроизводимых лазерным лучом, на единицу длины (обычно на дюйм) фотоматериала. Поскольку запись лазерным лучом связана с синхронизацией движения либо пленки, либо развертки луча, разрешающая способность не может плавно изменяться. Все ФНА имеют несколько фиксированных значений разрешающей способности. Эти фиксированные значения все производители фотонаборных автоматов делают приблизительно одинаковыми, поскольку они должны удовлетворять требованиям теории растрирования. Вот наиболее часто встречающиеся значения: 1270, 1693, 2032, 2540, 3387, 4064, 5080 dpi. Используются и другие значения разрешения, например 1219, 1372, 2400, 2438 и т.д. Разрешение во многом определяется конструкцией сканирующей и оптической систем, применяемым лазером и программным обеспечением..
Как правило, все ФНА с внутренним барабаном имеют несколько переключаемых размеров точки. Чтобы достичь этого, требуется усложнять механизм и оптическую систему ФНА. Поэтому хотя размер точки и изменяется, он не всегда соответствует идеально требуемому. Более дешевые и простые ФНА капстано- вого типа имеют всего один или два размера точки.
Линиатура растра. Этот параметр в большинстве случаев характеризует не сам фотонаборный автомат, а растровый процессор. Диапазон допустимых линиатур, как правило, жестко связан с разрешением (если разрешение составляет r dpi, то линиатура растра Lin - r/16 lpi). Исключения возможны как в сторону чрезмерного увеличения линиатуры за счет использования «запланированной нелинейности», так и путем простого ограничения допустимой линиатуры.
Практически требования к линиатуре определяются характером печатной продукции. Для журнальной продукции линиатура обычно составляет 133-150, реже 175 lpi, доя рекламной иногда достигает 200 lpi. Следует заметить, что предел различимости растровой структуры оттиска невооруженным глазом находится на уровне 200 lpi.
Повторяемость. При изготовлении пленок доя последующей цветной печати производится растрирование и вывод на ФНА четырех цветоделенных пленок доя голубой, пурпурной, желтой и
черной краски. Как правило, все четыре цвета выводятся последовательно друг за другом. Естественно, при печати совокупность цветных растровых точек должна правильно передать изображение. Если происходит довольно сильное смещение, то изображение теряет правильную цветопередачу и геометрические размеры.
Повторяемость характеризуют максимальным несовмеще- : нием точек по формату на определенном количестве подряд выведенных фотоформ. Современные фотонаборные автоматы
имеют очень хорошие показатели по этому параметру. Например, у барабанных ФНА практически стандартом стало значение ± 5 мкм, а у ФНА капстанового типа этот параметр находится в пределах 25-40 мкм.
Скорость записи. Все современные автоматы обладают очень высокой скоростью записи растрированного изображения, которая зависит от конструкции (частота вращения дефлектора, скорость перемещения фотоматериала или записывающей головки} и используемого для вывода значения разрешения. Чем больше значение разрешения, тем меньше скорость записи. Скорость записи выражают в количестве сантиметров экспони- рованного фотоматериала максимальной ширины для конкретного ФНА в минуту (см/мин).