Визначення значень та методом сум

Середини часткових інтервалів Тсі, Частоти mi Допоміжні коефіцієнти
К1= 25 К2= 7
-
- -
-
  N = 40 Л1= 5 Л2 = 1

В дві перші графи табл. 3.4 переписують значення з 1-го та 2-го рядків табл. 3.1. В третій графі табл. 3.4 роблять прочерк проти найбільшого значення частоти mi (в нашому прикладі це 17), а в четвертій графі – три прочерку: проти прочерку в тертій графі та зверху і знизу від нього. Далі в третій графі виконують послідовно додавання наростаючим підсумком значень mi по часткових інтервалах, починаючи від першого значення до прочерку та від останнього значення до прочерку.

Одержані суми складають і підраховують значення двох допоміжних коефіцієнтів К1 та Л1. Аналогічно одержують значення допоміжних коефіцієнтів К2 та Л2 по четвертій графі. Потім підраховуються допоміжні коефіцієнти М1 = К1- Л1іМ2 = К1+ Л1 + 2К2+ 2Л2 потім визначають середнє арифметичне значення напрацювання клинових пасів до першого відказу Визначення значень та методом сум - student2.ru та вибіркове середнє квадратичне відхилення Визначення значень та методом сум - student2.ruпо рівняннях:

Визначення значень та методом сум - student2.ru ; (3.2)

Визначення значень та методом сум - student2.ru (3.3)

де Тс max – значення середини часткового інтервалу з максимальною частотою відказів, напроти якого зроблений прочерк в третій графі;

Визначення значень та методом сум - student2.ru значення напрацювання в границях часткового інтервалу ( в нашому прикладі Визначення значень та методом сум - student2.ru г).

Результати розрахунків:

Визначення значень та методом сум - student2.ru г,

Визначення значень та методом сум - student2.ru

Ступінь розсіювання випадкової величини визначається безрозмірною числовою характеристикою – коефіцієнтом варіації:

Визначення значень та методом сум - student2.ru , (3.4)

де tзм - величина зміщення зони розсіювання Т1 відносно нульового значення

Зміщення необхідно приймати чисельно рівним нижній границі першого часткового інтервалу. З таблиць рядів розподілу випадкових величин в наших прикладах у випадку клинових пасів tзм=0, а у випадку колінчастих валів tзм=0,5 тис. мото-г. так у випадку клинових пасів коефіцієнт варіації підраховується по рівнянню:

Визначення значень та методом сум - student2.ru

Даний безрозмірний коефіцієнт не тільки використовується як відносна характеристика ступеню розсіювання випадкової величини відносно середнього значення, але і для орієнтованого вибору теоретичного закону розподілу (ТЗР) випадкової величини. Стосовно до завдання, що розглядається, при

n £ 0,33 – закон розподілу вибирається нормальний, а при n > 0,33 – закон розподілу Вейбулла.

Оскільки в першому прикладі значення n < 0,33, приймаємо для подальших розрахунків нормальний закон розподілу напрацювання клинових пасів до першого відказу. Цей орієнтований висновок необхідно в подальшому перевірити за допомогою критерію О.М.Колмогорова [1, 2, 3, 4].

3.4. Статистична оцінка ймовірності безвідказного напрацювання Визначення значень та методом сум - student2.ru та інтенсивності відказів Визначення значень та методом сум - student2.ru клинових пасів для і-х часткових інтервалів підраховують в наступних рівняннях:

Визначення значень та методом сум - student2.ru , (3.5)

де N – число виробів с початку випробувань (в розглянутому завданні

N = 40);

Визначення значень та методом сум - student2.ru - значення напрацювання в частковому інтервалі ( у кожному прикладі Визначення значень та методом сум - student2.ru = 150 г.)

N(tі) – кількість робото здатних виробів до початку і-го часткового інтервалу

Вихідні дані для підрахунків та їх результати зводять в табл. 3.5

Таблиця 3.5.

Визначення статистичних оцінок Визначення значень та методом сум - student2.ru та Визначення значень та методом сум - student2.ru

Показники Значення показників по часткових інтервалах
0...150 150...300 300...450 450...600 600...750 750...900
1.Кількість відказів за інтервал, mi
2.Кількість виробів, що відмовили до кінця інтервалу, Smi
3. Кількість роботоздатних виробів до початку інтервалу, N(ti)
4.Статистична оцінка, Визначення значень та методом сум - student2.ru 0,975 0,875 0,525 0,100 0,025
5. Статистична оцінка, Визначення значень та методом сум - student2.ru 0,0002 0,0007 0,0027 0,0054 0,0050 0,0067

3.5. Графік зміни дослідної ймовірності безвідказної роботи Визначення значень та методом сум - student2.ru будують з використанням відповідних їх значень для часткових інтервалів з табл. 3.5.

Приклад побудови графіка показаний на рис. 3.4.

Між показниками ймовірності безвідказної роботи виробу та інтегральною функцією розподілу напрацювання до першого відказу існує взаємозв’язок, обумовлений рівнянням

Визначення значень та методом сум - student2.ru Визначення значень та методом сум - student2.ru і Визначення значень та методом сум - student2.ru (3.6)

Рис. 3.4. Емпірична та теоретична інтегральна функції розподілу напрацювання клинових пасів до першого відказу та ймовірність безвідказної роботи пасів по даних випробувань на надійність.

Лабораторна робота №2

Наши рекомендации