Биполярные транзисторы. Классификация и построение
Импульсные диоды
Импульсный диод – это полупроводниковый диод, имеющий малую длительность переходных процессов и предназначенный для применения в импульсных режимах работы.
Импульсные режимы – это такие режимы, когда диоды переключаются с прямого напряжения на обратное через короткие промежутки времени, порядка долей микросекунды, при этом важную роль играют здесь переходные процессы. Основное назначение импульсных диодов – работа в качестве коммутирующих элементов. Условия работы импульсных диодов обычно соответствует высокому уровню инжекции, т. е. относительно большим прямым токам. Вследствие этого свойства и параметры импульсных диодов определяются переходными процессами.
Одной из первых была разработана конструкция точечного импульсного диода (рис. 2.11). Точечный диод состоит из кристалла германия, припаянного к кристаллодержателю, контактного электрода в виде тонкой проволоки и стеклянного баллона. Особенностью точечных диодов является большое сопротивление базы, что приводит к увеличению прямого напряжения на диоде.
В связи с недостатками точечных диодов они практически полностью вытеснены импульсными диодами, производство которых основано на современных производительных и контролируемых методах формирования p-n-переходов (планарной технологии, эпитаксиального наращивания). Основным исходным полупроводниковым материалом при этом служит кремний, а иногда арсенид галлия.
Рис. 2.11. Конструкция импульсного диода:
1 – кристалл полупроводника; 2 – кристаллодержатель; 3 – припой; 4 – контактная пружина;5 – стеклянный корпус; 6 – коваровая трубка; 7 – внешние выводы
В связи с недостатками точечных диодов они практически полностью вытеснены импульсными диодами, производство которых основано на современных производительных и контролируемых методах формирования p-n-переходов (планарной технологии, эпитаксиального наращивания). Основным исходным полупроводниковым материалом при этом служит кремний, а иногда арсенид галлия.
Для ускорения переходных процессов в кремниевых импульсных диодах и для уменьшения значения времени восстановления обратного сопротивления этих диодов в исходный кремний вводят примесь золота. Эта примесь обеспечивает появление в запрещенной зоне кремния энергетических уровней рекомбинационных ловушек и уменьшение времени жизни неосновных носителей.
В настоящее время большинство конструкций имеет металлокерамический, металлостеклянный или металлический корпус с ленточными выводами.
Рассмотрим процесс переключения такого диода при воздействии на него прямоугольного импульса (рис. 2.12).
При прямом напряжении на участке происходит инжекция носителей из эмиттерной области в базовую и их накопление там. При смене полярности напряжения на обратную в первый момент величина обратного тока будет значительна, а обратное сопротивление диода резко уменьшится, так как накопленные в базе неосновные носители под действием изменившегося направления напряженности электрического поля начнут двигаться в сторону p-n-перехода, образуя импульс обратного тока. По мере перехода их в эмиттерную область, их количество уменьшится и через некоторое время обратный ток достигнет нормального установившегося значения, а сопротивление диода в обратном направлении восстановится до нормальной величины.
Рис. 2.12. Переходные процессы в импульсном диоде
Процесс уменьшения накопленного заряда в базе называется рассасыванием, а время, в течение которого обратный ток изменяется от максимального значения до установившегося, называется временем восстановления обратного сопротивления. Время восстановления обратного сопротивления – один из важнейших параметров импульсных диодов. Чем оно меньше, тем диод лучше. Для улучшения свойств импульсных диодов исходный полупроводник выбирают с малым временем жизни носителей заряда (для более интенсивного процесса рекомбинации в базе), а сам p-n-переход делают с малой площадью, чтобы снизить величину барьерной емкости перехода .
Выводы:
1. Импульсные диоды работают в режиме электронного ключа.
2. Длительность импульсов может быть очень мала, поэтому диод должен очень быстро переходить из одного состояния в другое.
3. Основным параметром, характеризующим быстродействие импульсных диодов является время восстановления обратного сопротивления.
4. Для уменьшения используют специальные меры, ускоряющие процесс рассасывания неосновных носителей заряда в базе.
5. Требованиям, предъявляемым к импульсным диодам, хорошо удовлетворяют диоды на основе барьера Шоттки, которые имеют очень малую инерционность благодаря отсутствию инжекции и накопления неосновных носителей заряда в базе.
Биполярные транзисторы. Классификация и построение
Биполярный транзистор – это полупроводниковый прибор, состоящий из трех областей с чередующимися типами электропроводности и пригодный для усиления мощности.
Выпускаемые в настоящее время биполярные транзисторы можно классифицироватьпо следующим признакам:
- по материалу: германиевые и кремниевые;
- по виду проводимости областей: типа р-n-р и n-p-n;
- по мощности: малой (Рмах £ 0,3Вт), средней (Рмах £ 1,5Вт) и большой мощности (Рмах > 1,5Вт);
- по способу изготовления (точечные, диффузионные, сплавные, эпитаксиальные, планарные);
- по частоте: низкочастотные, среднечастотные, высокочастотные и СВЧ.
В биполярных транзисторах ток определяется движением носителей заряда двух типов: электронов и дырок (или основными и неосновными). Отсюда их название – биполярные.
В настоящее время изготавливаются и применяются исключительно транзисторы с плоскостными р-n- переходами.
Устройство плоскостного биполярного транзистора показано схематично на рис. 4.1.
Рис. 4.1: а) р-n-р типа; б) n-р-n типа
Он представляет собой пластинку германия или кремния, в которой созданы три области с различной электропроводностью. У транзистора типа n-р-n средняя область имеет дырочную, а крайние области – электронную электропроводность.
Транзисторы типа р-n-р имеют среднюю область с электронной, а крайние области с дырочной электропроводностью.
Средняя область транзистора называется базой, одна крайняя область – эмиттером, другая – коллектором. Таким образом в транзисторе имеются два р-n- перехода: эмиттерный – между эмиттером и базой и коллекторный – между базой и коллектором. Площадь эмиттерного перехода меньше площади коллекторного перехода.
Эмиттером называется область транзистора назначением которой является инжекция носителей заряда в базу. Коллектором называют область, назначением которой является экстракция носителей заряда из базы. Базой является область, в которую инжектируются эмиттером неосновные для этой области носители заряда.
Концентрация основных носителей заряда в эмиттере во много раз больше концентрации основных носителей заряда в базе, а их концентрация в коллекторе несколько меньше концентрации в эмиттере. Поэтому проводимость эмиттера на несколько порядков выше проводимости базы, а проводимость коллектора несколько меньше проводимости эмиттера.
От базы, эмиттера и коллектора сделаны выводы. В зависимости от того, какой из выводов является общим для входной и выходной цепей, различают три схемы включения транзистора: с общей базой (ОБ), общим эмиттером (ОЭ), общим коллектором (ОК).