Закон распределения дискретной случайной величины. Многоугольник (полигон) распределения.

Случайные величины: дискретные и непрерывные.

При проведении стохастического эксперимента формируется пространство элементарных событий – возможных исходов этого эксперимента. Считают, что на этом пространстве элементарных событий задана случайная величина X, если задан закон (правило) по которому каждому элементарному событию сопоставляется число. Таким образом, случайную величину X можно рассматривать, как функцию, заданную на пространстве элементарных событий.

■ Случайная величина - величина, которая при каж­дом испытании прини­мает то или иное числовое значение (на­перед неизвестно, какое именно), зависящее от случайных при­чин, которые заранее не могут быть учтены. Случайные величины обозначают за­главными буквами латинского алфавита, а возможные значе­ния случайной величины – малыми. Так, при бросании игрального кубика проис­ходит событие, связанное с числом x , где x – выпавшее число очков. Число очков – случайная величина, а числа 1, 2, 3, 4, 5, 6 – возможные значе­ния этой величины. Расстояние, которое пролетит снаряд при выстреле из орудия – тоже случайная величина (зависит от установки при­цела, силы и направления ветра, температуры и других факто­ров), а возможные значения этой величины принадлежат неко­торому промежутку (a; b).

■ Дискретная случайная величина – случайная величина, которая принимает отдельные, изо­лированные возмож­ные значения с определенными вероятно­стями. Число возможных значений дискретной случайной величины может быть конечным и бесконечным.

■ Непрерывная случайная величина – случайная величина, которая может принимать все значения из некоторого конечного или бесконечного проме­жутка. Число возможных значений непрерывной случайной величины – беско­нечно.

Например, число выпавших очков при бросании кубика, балльная оценка за кон­трольную работу – дискретные случайные величины; рас­стояние, которое пролетает снаряд при стрельбе из орудия, по­грешность измерений показателя времени усвоения учебного мате­риала, рост и вес человека – непрерывные случайные величины.

Закон распределения случайной величины – соответствие между возмож­ными значениями случайной величины и их вероятностями, т.е. каждому воз­можному значению xi ставится в соответствие ве­роятность pi, с которой случайная величина может принять это значение. Закон распределения случайной величины может быть задан таблично (в форме таблицы), аналитиче­ски (в виде формулы) играфически.

Пусть дискретная случайная величина X принимает значения x1, x2, …, xn с ве­роятностями p1, p2, …, pnсоответственно, т.е. P(X=x1) = p1, P(X=x2) = p2, …, P(X=xn) = pn. При табличном задании закона распределения этой величины первая строка таблицы содержит воз­можные значения x1, x2, …, xn, а вторая – их вероятности

X x1 x2 xn
p p1 p2 pn

В результате испытания дискретная случайная величина X принимает одно и только одно из воз­можных значений, поэтому события X=x1, X=x2, …, X=xn образуют полную группу попарно несовместных событий, и, значит, сумма вероятностей этих событий равна единице, т.е. p1 + p2 +… + pn =1.

Закон распределения дискретной случайной величины. Многоугольник (полигон) распределения.

Как известно, случайной величиной называется переменная величина, которая может принимать те или иные значения в зависимости от случая. Случайные величины обозначают заглавными буквами латинского алфавита (X, Y, Z), а их значения – соответствующими строчными буквами (x, y, z). Случайные величины делятся на прерывные (дискретные) и непрерывные.

Дискретной случайной величиной называется случайная величина, принимающая лишь конечное или бесконечное (счетное) множество значений с определенными ненулевыми вероятностями.

Законом распределения дискретной случайной величины называется функция, связывающая значения случайной величины с соответствующими им вероятностями. Закон распределения может быть задан одним из следующих способов.

1. Закон распределения может быть задан таблицей:

Значения xi x1 x2 x3 ... xn
Вероятности pi p1 p2 p3 ... pn

События X = xi (i = 1, 2, 3,…,n) являются несовместными и единственно возможными, т.е. они образуют полную систему событий. Поэтому сумма их вероятностей равна единице: р123+…+рn = ∑pi =1

2. Закон распределения может быть задан аналитически (формулой) P(X = xi) = ϕ(xi). Например:

а) с помощью биномиального распределения: Pn(X=k) = Сnk pk qn-k, 0<р<1, k = 0, 1, 2, …, n;

б) с помощью распределения Пуассона:

Закон распределения дискретной случайной величины. Многоугольник (полигон) распределения. - student2.ru

где λ>0, k = 0, 1, 2, … .

в) с помощью функции распределения F(x), определяющей для каждого значения x вероятность того, что случайная величина X примет значение, меньшее x, т.е. F(x) = P(X < x).

Закон распределения дискретной случайной величины. Многоугольник (полигон) распределения. - student2.ru

- свойства функции F(x)

3. Закон распределения может быть задан графически – многоугольником (полигоном) распределения (смотри задачу 3).

Отметим, что для решения некоторых задач не обязательно знать закон распределения. В некоторых случаях достаточно знать одно или несколько чисел, отражающих наиболее важные особенности закона распределения. Это может быть число, имеющее смысл «среднего значения» случайной величины, или же число, показывающее средний размер отклонения случайной величины от своего среднего значения. Числа такого рода называют числовыми характеристиками случайной величины.

Основные числовые характеристики дискретной случайной величины:

  • Mатематическое ожидание (среднее значение) дискретной случайной величины M(X)=Σ xipi.
    Для биномиального распределения M(X)=np, для распределения Пуассона M(X)=λ
  • Дисперсия дискретной случайной величины D(X)= M[X–M(X)]2 или D(X) = M(X2)−[M(X)]2. Разность X–M(X) называют отклонением случайной величины от ее математического ожидания.
    Для биномиального распределения D(X)=npq, для распределения Пуассона D(X)=λ
  • Среднее квадратическое отклонение (стандартное отклонение) σ(X)=√D(X).

· Для наглядности представления вариационного ряда большое значение имеют его графические изображения. Графически вариационный ряд может быть изображён в виде полигона, гистограммы и кумуляты.

· Полигон распределения (дословно – многоугольник распределения) называют ломанную, которая строится в прямоугольной системе координат. Величина признака Закон распределения дискретной случайной величины. Многоугольник (полигон) распределения. - student2.ru откладывается на оси абсцисс, соответствующие частоты Закон распределения дискретной случайной величины. Многоугольник (полигон) распределения. - student2.ru (или относительные частоты Закон распределения дискретной случайной величины. Многоугольник (полигон) распределения. - student2.ru ) – по оси ординат. Точки Закон распределения дискретной случайной величины. Многоугольник (полигон) распределения. - student2.ru (или Закон распределения дискретной случайной величины. Многоугольник (полигон) распределения. - student2.ru ) соединяют отрезками прямых и получают полигон распределения. Чаще всего полигоны применяются для изображения дискретных вариационных рядов, но их можно применять также и для интервальных рядов. В этом случае на оси абсцисс откладываются точки, соответствующие серединам данных интервалов.

· Гистограммой распределения называют ступенчатую фигуру[26], состоящую из прямоугольников, основанием которых служат частичные интервалы длиною Закон распределения дискретной случайной величины. Многоугольник (полигон) распределения. - student2.ru , а высоты пропорциональны частотам (или относительным частотам) и равны Закон распределения дискретной случайной величины. Многоугольник (полигон) распределения. - student2.ru – плотность частоты (или Закон распределения дискретной случайной величины. Многоугольник (полигон) распределения. - student2.ru – плотность относительной частоты). Для построения гистограммы на оси абсцисс откладывают частичные интервалы, а над ними проводят отрезки, параллельные оси абсцисс на расстоянии Закон распределения дискретной случайной величины. Многоугольник (полигон) распределения. - student2.ru (или Закон распределения дискретной случайной величины. Многоугольник (полигон) распределения. - student2.ru ). Заметим, что площадь гистограммы частот (относительных частот) равна сумме всех частот (относительных частот), то есть, равна объему выборки (то есть – единице).

Наши рекомендации